Long, Shunchao; Wang, Jian; Deng, Jiqin Vector valued Calderón-Zygmund operators on Hardy spaces associated with Herz spaces. (English) Zbl 1054.42505 Adv. Math., Beijing 28, No. 4, 331-337 (1999). Summary: In this paper, it is proved that the Calderón-Zygmund operators with vector valued kernels are bounded from Hardy spaces \(HK_p\) associated with Herz spaces to vector valued Herz spaces \(K_{E,p}\). Applications to Calderón-Zygmund operators with rough kernels, Calderón-Zygmund maximal operators, approximate identies and maximal operators are given. MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory 42B30 \(H^p\)-spaces Keywords:Calderón-Zygmund singular integral; maximal operator; vector valued operator; Herz space; Hardy space PDF BibTeX XML Cite \textit{S. Long} et al., Adv. Math., Beijing 28, No. 4, 331--337 (1999; Zbl 1054.42505)