Wang, Jian On finitely generated closed ideals of \(H^ \infty\). (Chinese) Zbl 0810.46058 Chin. Ann. Math., Ser. A 12, No. 2, 210-217 (1991). Let \(\Omega\) be a Denjoy domain and \(g, f_ 1,\dots, f_ n\in H^ \infty(\Omega)\). Let \(\alpha(t)\) be a nonnegative function on \(\mathbb{R}^ +\) with \(\alpha(t)/t\to 0\). If the following conditions are satisfied: (1) \(| g(z)|\leq \alpha\left(\sum^ n_{j=1} | f_ j(z)|\right)\), \(z\in \Omega\); (2) \(g(\bar z)= \overline{g(z)}\), \(z\in \Omega\); (3) there exists \(\delta>0\) such that \(| g(z)|\geq \delta\), \(x\in \Omega\cap \mathbb{R}\); then \(g\in \overline{I(f_ 1,\dots, f_ n)}\). Here \(I(f_ 1,\dots, f_ n)\) is the ideal generated by \(\{f_ 1,\dots, f_ n\}\) and \(\overline{I(f_ 1,\dots, f_ n)}\) is the closure of \(I(f_ 1,\dots, f_ n)\). Reviewer: Ren Fu-Yao (Shanghai) MSC: 46J15 Banach algebras of differentiable or analytic functions, \(H^p\)-spaces Keywords:Denjoy domain PDF BibTeX XML Cite \textit{J. Wang}, Chin. Ann. Math., Ser. A 12, No. 2, 210--217 (1991; Zbl 0810.46058)