×

Numerical dissipation control in an adaptive WCNS with a new smoothness indicator. (English) Zbl 1427.76179

Summary: A novel adaptive central-upwind weighted compact nonlinear scheme (WCNS) based on an adjusting parameter of the smoothness indicator is proposed. For the purposes of restraining numerical dissipation in smooth regions, preserving shock-capturing ability and avoiding spurious numerical oscillations around discontinuous regions, an adaptive parameter is introduced in this improved WCNS. The improved scheme can automatically modify the adaptive parameter to fit nonlinear weights to discontinuity according to the local flow-field properties obtained by a discontinuity detector. In smooth regions, the scheme inclines to an optimal central scheme to minimize dissipations and capture turbulent features. While, in discontinue regions, it is more likely to behave as an up-wind scheme for stable shock-capturing ability and numerical robustness. Furthermore, to solve the problem of losing accuracy, a smoothness indicator with a mapping function is introduced. The order-recover property of the improved scheme can obviously avoid unsymmetrical breaking of the flow field. A variety of benchmark cases are tested to verify the improved WCNS performance. The computational efficiencies of all cases have been estimated by measuring the computational time. Numerical results demonstrate that the improved WCNS exhibits excellent shock-capturing ability, lower numerical dissipation, higher numerical robustness and efficiency in resolving complex flow features.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
76Nxx Compressible fluids and gas dynamics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J. Comput. Phys., 126, 202-228 (1996) · Zbl 0877.65065
[2] Henrick, A. K.; Aslam, T. D.; Powers, J. M., Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys., 207, 542-567 (2005) · Zbl 1072.65114
[3] Borges, R.; Carmona, M.; Costa, B.; Don, W. S., An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws, J. Comput. Phys., 227, 3191-3211 (2008) · Zbl 1136.65076
[4] Taylor, E. M.; Wu, M.; Martin, M. P., Optimization of nonlinear error for weighted essentially non-oscillatory methods in direct numerical simulations of compressible turbulence, J. Comput. Phys., 223, 384-397 (2007) · Zbl 1165.76350
[5] Martin, M. P.; Taylor, E. M.; Wu, M.; Weirs, V. G., A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence, J. Comput. Phys., 220, 270-289 (2006) · Zbl 1103.76028
[6] Fu, L.; Hu, X. Y.; Adams, N. A., A family of high-order targeted ENO schemes for compressible-fluid simulations, J. Comput. Phys., 305, 333-359 (2016) · Zbl 1349.76462
[7] Brehm, C.; Barad, M. F.; Housman, J. A.; Kiris, C. C., A comparison of higher-order finite-difference shock capturing schemes, Comput. Fluids, 122, 184-208 (2015) · Zbl 1390.76555
[8] Deng, X.; Zhang, H., Developing high-order weighted compact nonlivear schemes, J. Comput. Phys., 165, 22-44 (2000) · Zbl 0988.76060
[9] Nonomura, T.; Fujii, K., Robust explicit formulation of weighted compact nonlinear scheme, Comput. Fluids, 85, 8-18 (2013) · Zbl 1290.76105
[10] Zhang, S.; Jiang, S.; Shu, C., Development of nonlinear weighted compact schemes with increasingly higher order accuracy, J. Comput. Phys., 227, 7294-7321 (2008) · Zbl 1152.65094
[11] Deng, X., High-order accurate dissipative weighted compact nonlinear schemes, Sci. China Ser. A, 45, 3, 356-370 (2002) · Zbl 1054.65095
[12] Deng, X.; Liu, X.; Mao, M., Advances in high-order accurate weighted compact nonlinear schemes, Adv. Mech., 37, 3, 417-427 (2007)
[13] Nonomura, T.; Fujii, K., Effects of difference scheme type in high-order weighted compact nonlinear schemes, J. Comput. Phys., 228, 3533-3539 (2009) · Zbl 1396.65140
[14] Nonomura, T.; Goto, Y.; Fujii, K., Improvements of efficiency in seventh-order weighted compact nonlinear scheme, (6th Asia Workshop on Computational Fluid Dynamics (6AWCFD) AW6-16. 6th Asia Workshop on Computational Fluid Dynamics (6AWCFD) AW6-16, Tokyo, Japan (2010))
[15] Liu, X.; Zhang, S.; Zhang, H.; Shu, C.-W., A new class of central compact schemes with spectral-like resolution II: hybrid weighted nonlinear schemes, J. Comput. Phys., 284, 133-154 (2015) · Zbl 1351.76170
[16] Hu, X. Y.; Wang, Q.; Adams, N. A., An adaptive central-upwind weighted essentially non-oscillatory scheme, J. Comput. Phys., 229, 8952-8965 (2010) · Zbl 1204.65103
[17] Wong, M. L.; Lele, S. K., High-order localized dissipation weighted compact nonlinear scheme for shock-and interface-capturing in compressible flows, J. Comput. Phys., 339, 179-209 (2017) · Zbl 1375.76117
[18] Kamiya, T.; Asahara, M.; Nonomura, T., Application of central differencing and low-dissipation weights in a weighted compact nonlinear scheme, Int. J. Numer. Methods Fluids, 84, 3, 152-180 (2017)
[19] Nonomura, T.; Iizuka, N.; Fujii, K., Freestream and vortex preservation properties of high-order WENO and WCNS on curvilinear grids, Comput. Fluids, 39, 197-214 (2010) · Zbl 1242.76180
[20] Deng, X.; Mao, M.; Tu, G.; Liu, H.; Zhang, H., Geometric conservation law and applications to high-order finite difference schemes with stationary grids, J. Comput. Phys., 230, 1100-1115 (2011) · Zbl 1210.65153
[21] Tu, G.; Zhao, X.; Mao, M.; Chen, J.; Deng, X.; Liu, H., Evaluation of Euler fluxes by a high-order CFD scheme: shock instability, Int. J. Comput. Fluid Dyn., 28, 5, 171-186 (2014) · Zbl 07512421
[22] Nonomura, T.; Morizawa, S.; Terashima, H.; Obayashi, S.; Fujii, K., Numerical (error) issues on compressible multicomponent flows using a high-order differencing scheme: weighted compact nonlinear scheme, J. Comput. Phys., 231, 3181-3210 (2012) · Zbl 1402.76087
[23] Lele, S. K., Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103, 16-42 (1992) · Zbl 0759.65006
[24] Lax, P. D., Weak solution of non-linear hyperbolic equations and their numerical computations, Commun. Pure Appl. Math., 7, 159-193 (1954) · Zbl 0055.19404
[25] Woodward, P.; Colella, P., Numerical simulations of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54, 115-173 (1984) · Zbl 0573.76057
[26] Young, Y. N.; Tufo, H.; Dubey, A.; Rosner, R., On the miscible Rayleigh-Taylor instability: two and three dimensions, J. Fluid Mech., 447, 377-408 (2001) · Zbl 0999.76056
[27] Lax, P. D.; Liu, X. D., Solution of two-dimensional Riemann problems of gas dynamics by positive schemes, SIAM J. Sci. Comput., 19, 319-340 (1998) · Zbl 0952.76060
[28] Li, X. L.; Fu, D. X.; Ma, Y. W., Direct numerical simulation of compressible isotropic turbulence, Sci. China Ser. A, 45, 11, 1452-1460 (2002) · Zbl 1145.76388
[29] Honein, A. E.; Moin, P., Higher entropy conservation and numerical stability of compressible turbulence simulations, J. Comput. Phys., 201, 531-545 (2004) · Zbl 1061.76044
[30] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103
[31] Jeong, J.; Hussain, F., On the identification of a vortex, J. Math. Fluid Mech., 285, 69-94 (1995) · Zbl 0847.76007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.