×

Sum and difference coarray based MIMO radar array optimization with its application for DOA estimation. (English) Zbl 1387.94037

Summary: Based on the sum and difference coarrays, multiple-input multiple-output (MIMO) radar with minimum redundancy (MR) concept, referred to as MR MIMO, can considerably increase the spatial degrees of freedom (DOFs). However, traditional MR MIMO needs computational search to determine the position of each element. In this paper, a modified MR monostatic MIMO configuration is proposed, referred to as MMRM MIMO. In the proposed system, the MMRM MIMO radar is consisted of several levels of uniform linear array, which brings the advantage that the position of each element can be determined without computational search. Furthermore, it offers more than \(N^{2}\) DOFs for an \(N\)-elemental array. In order to utilize the extended DOFs of MMRM MIMO radar for direction-of-arrival (DOA) estimation, an average Toeplitz approximation method (TAM) is employed, which achieves robust performance even under low signal-to-noise ratio, few snapshots and array error. Numerous simulation results are provided to demonstrate the effectiveness of the proposed method for DOA estimation.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A13 Detection theory in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abramovich, Y. I., Spencer, N. K., & Gorokhov, A. Y. (1999). Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. II. Partially augmentable arrays. IEEE Transactions on Signal Processing, 47, 1502-1521. · Zbl 0995.78020 · doi:10.1109/78.765119
[2] Abramovich, Y. I., Spencer, N. K., Gorokhov, A. Y., & Spencer, N. K. (1998). Positive-definite Toeplitz completion in DOA estimation for nonuniform linear antenna arrays. I. Fully augmentable arrays. IEEE Transactions on Signal Processing, 46, 2458-2471. · Zbl 0979.78021 · doi:10.1109/78.709534
[3] Ali, T., Sadeque, A., Saquib, M., & Ali, M. (2014). MIMO radar for target detection and localization in sensor networks. IEEE Transactions on Signal Processing, 8(1), 75-82.
[4] Bekkerman, I., & Tabrikian, J. (2006). Target detection and localization using MIMO radars and sonars. IEEE Transactions on Signal Processing, 54, 3873-3883. · Zbl 1374.94652 · doi:10.1109/TSP.2006.879267
[5] Cao, Y., Zhang, Z., Dai, F., & Xie, R. (2011). Direction of arrival estimation for monostatic multiple-input multiple output radar with arbitrary array structures. IEEE Transactions on Signal Processing, 6, 679-686.
[6] Chen, C. Y., & Vaidyanathan, P. P. (2008). Minimum redundancy MIMO radars. In Proceedings of the IEEE international symposium on circuits systems (ISCAS), 2008, May 18-21, 2008, pp. 45-48. · Zbl 1380.94061
[7] Frankford, M., Stewart, K., Majurec, N., & Johnson, J. (2014). Numerical and experimental studies of target detection with MIMO radar. IEEE Transactions on Signal Processing, 50(2), 1569-1577.
[8] Gu, C., He, J., Zhu, X., & Liu, Z. (2010). Efficient 2D DOA estimation of coherent signals in spatially correlated noise using electromagnetic vector sensors. IEEE Transactions on Signal Processing, 21, 239-254. · Zbl 1198.94058
[9] Hack, D., Patton, L., Himed, B., & Saville, M. (2014). Detection in Passive MIMO Radar Networks. IEEE Transactions on Signal Processing, 62(11), 2999-3012. · Zbl 1394.94741 · doi:10.1109/TSP.2014.2319776
[10] Haupt, R. L. Interleaving thinned sum and difference linear arrays. In Antennas and propagation society international symposium 2006, IEEE, 2006, pp. 4773-4776. · Zbl 1374.94652
[11] Hoctor, R. T., & Kassam, S. A. (1990). The unifying role of the coarray in aperture synthesis for coherent and incoherent and imaging. Proceedings of the IEEE, 78, 735-752. · doi:10.1109/5.54811
[12] Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 24, 106-114. · doi:10.1109/MSP.2007.904812
[13] Liu, C. L., & Vaidyanathan, P. P. (2015). Remarks on the spatial smoothing step in coarray MUSIC. IEEE Transactions on Signal Processing, 22(9), 1438-1442. · doi:10.1109/LSP.2015.2409153
[14] Ma, W. K., Hsieh, T. H., & Chi, C. Y. (2009, April). DOA estimation of quasi-stationary signals via Khatri-Rao subspace. In Proceedings of the international conference on acoustics, speech signal processing (ICASSP), pp. 2165-2168. · Zbl 1392.94325
[15] Pal, P., & Vaidyanathan, P. P. (2010). Nested arrays: A novel approach to array processing with enhanced degrees of freedom. IEEE Transactions on Signal Processing, 58(8), 4167-4181. · Zbl 1392.94377 · doi:10.1109/TSP.2010.2049264
[16] Pal, P., & Vaidyanathan, P. (2012a). Nested arrays in two dimensions, part II: Application in two dimensional array processing. IEEE Transactions on Signal Processing, 60(9), 4706-4718. · Zbl 1393.94386 · doi:10.1109/TSP.2012.2203815
[17] Pal, P., & Vaidyanathan, P. (2012b). Nested arrays in two dimensions, part I: Geometrical considerations. IEEE Transactions on Signal Processing, 60(9), 4694-4705. · Zbl 1163.34344 · doi:10.1109/TSP.2012.2203814
[18] Pal, P., & Vaidyanathan, P. P. (2014a). Gridless methods for underdetermined source estimation. In Proceedings of the IEEE asilomar conference on signals, systems, and computers, 2014.
[19] Pal, P., & Vaidyanathan, P. (2014b). A grid-less approach to underdetermined direction of arrival estimation via low rank matrix denoising. IEEE Signal Processing Letters, 21(6), 737-741. · doi:10.1109/LSP.2014.2314175
[20] Piliai, S. U., & Kwon, B. H. (1989). Forward/backward spatial smoothing techniques for coherent signal identification. IEEE Transactions on Antennas and Propagation, 37, 8-15. · Zbl 0682.93066
[21] Ruf, C. S. (1993). Numerical annealing of low-redundancy linear arrays. IEEE Transactions on Antennas and Propagation, 41, 85-90. · doi:10.1109/8.210119
[22] Shnidman, D. A. (2004). An optimization technique for sum and difference array factors Aerospace and Electronic Systems. IEEE Signal Processing Letters, 40(1), 360-370.
[23] Sun, X., Zhou, J., & Chen, H. (2014). Low complexity direction-of-arrival estimation of coherent noncircular sources. Multidimensional Systems and Signal Processing, 27(1), 159-177. · Zbl 1380.94061 · doi:10.1007/s11045-014-0296-1
[24] Suwandi, L., Leyman, A., & Yong, H. (2006). Fourth-order and weighted mixed order direction-of-arrival estimators. IEEE Signal Processing Letters, 13(11), 691-694. · doi:10.1109/LSP.2006.879456
[25] Tan, Z., Eldar, Y., & Nehorai, A. (2014). Direction of arrival estimation using co-prime arrays: A super resolution viewpoint. IEEE Transactions on Signal Processing, 61(21), 5565-5576. · Zbl 1394.94581 · doi:10.1109/TSP.2014.2354316
[26] Tan, Z., & Nehorai, A. (2014). Sparse direction of arrival estimation using co-prime arrays with off-grid targets. IEEE Signal Processing Letters, 21(1), 26-29. · doi:10.1109/LSP.2013.2289740
[27] Thakrc, A., Haardt, M., & Giridhar, K. (2009). Single snapshot spatial smoothing with improved effective array aperture. IEEE Signal Processing Letters, 15(6), 505-508. · doi:10.1109/LSP.2009.2017573
[28] Zhang, Y., Amin, M., & Himed, B. (2013, May). Sparsity-based DOA estimation using co-prime arrays. In Proceedings of the IEEE international conference on acoustics, speech, signal processing, pp. 3967-3971.
[29] Zhang, X., Chen, C., Li, J., & Xu, D. (2014a). Blind DOA and polarization estimation for polarization-sensitive array using dimension reduction MUSIC. IEEE Transactions on Signal Processing, 25, 67-82. · Zbl 1282.93251
[30] Zhang, Y., Qin, S., & Amin, M. (2014b, May). DOA estimation exploiting coprime arrays with sparse sensor spacing. In Proceedings of the IEEE international conference on acoustics, speech, signal processing, pp. 2267-2271. · Zbl 1282.93251
[31] Zhang, X., Zhou, M., Chen, H., & Li, J. (2014c). Two-dimensional DOA estimation for acoustic vector-sensor array using a successive MUSIC. IEEE Transactions on Signal Processing, 25, 583-600. · Zbl 1322.94042
[32] Zheng, G., & Chen, B. (2015). Unitary dual-resolution ESPRIT for joint DOD and DOA estimation in bistatic MIMO radar. IEEE Transactions on Signal Processing, 26, 159-178. · Zbl 1349.94095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.