×

Dynamic analysis of a fractional-order model for hepatitis B virus with Holling II functional response. (English) Zbl 1429.92137

Summary: In this paper, a fractional-order model is constructed to describe the transmission of Hepatitis B Virus (HBV). Firstly, the existence and uniqueness of positive solutions are proved. Secondly, the basic reproduction number and the sufficient conditions for the existence of two equilibriums are obtained. Thirdly, the stability of equilibriums are analyzed. After that, some numerical simulations are performed to verify the theoretical prediction. Finally, a brief discussion is presented.

MSC:

92D30 Epidemiology
34A08 Fractional ordinary differential equations
37N25 Dynamical systems in biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Wang, J.; Xiao, Y.; Cheke, R. A., Modelling the effects of contaminated environments on HFMD infections in mainland China, BioSystems, 140, 1-7 (2016) · doi:10.1016/j.biosystems.2015.12.001
[2] Qi, H.; Liu, L.; Meng, X., Dynamics of a nonautonomous stochastic SIS epidemic model with double epidemic hypothesis, Complexity, 2017 (2017) · Zbl 1377.93152 · doi:10.1155/2017/4861391
[3] Zhang, J.; Li, Y.; Jin, Z.; Zhu, H., Dynamics analysis of an avian influenza A (H7N9) epidemic model with vaccination and seasonality, Complexity, 2019, 1 (2019) · Zbl 1420.92071 · doi:10.1155/2019/4161287
[4] Carvalho, A. R.; Pinto, C. M., Energence of drug-resistance in HIV dynamics under distict HAART regimes, Communications in Nonlinear Science and Numerical Simulation, 30, 1-3, 207-226 (2016) · Zbl 1489.92090 · doi:10.1016/j.cnsns.2015.06.019
[5] Tang, B.; Xiao, Y.; Tang, S.; Wu, J., Modelling weekly vector control against Dengue in the Guangdong Province of China, Journal of Theoretical Biology, 410, 65-76 (2016) · Zbl 1348.92162 · doi:10.1016/j.jtbi.2016.09.012
[6] Lin, J.; Xu, R.; Tian, X., Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions, intracellular delay, and humoral immunity, Applied Mathematics and Computation, 315, 516-530 (2017) · Zbl 1426.92078 · doi:10.1016/j.amc.2017.08.004
[7] Nowak, M. A.; Bangham, C. R. M., Population dynamics of immune responses to persistent viruses, Science, 272, 5258, 74-79 (1996) · doi:10.1126/science.272.5258.74
[8] Nowak, M. A.; May, R. M., Virus Dynamics: Mathematical Principles of Immunology and Virology (2000), London, UK: Oxford University Press, London, UK · Zbl 1101.92028
[9] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.; Mcdade, H., Viral dynamics in hepatitis B virus infection, Proceedings of the National Acadamy of Sciences of the United States of America, 93, 9, 4398-4402 (1996) · doi:10.1073/pnas.93.9.4398
[10] Ciupe, S. M.; Ribeiro, R. M.; Nelson, P. W.; Perelson, A. S., Modeling the mechanisms of acute hepatitis B virus infection, Journal of Theoretical Biology, 247, 1, 23-35 (2007) · Zbl 1455.92022 · doi:10.1016/j.jtbi.2007.02.017
[11] Wang, K.; Wang, W., Propagation of HBV with spatial dependence, Mathematical Biosciences, 210, 1, 78-95 (2007) · Zbl 1129.92052 · doi:10.1016/j.mbs.2007.05.004
[12] Neumann, A. U.; Lam, N. P.; Dahari, H.; Gretch, D. R.; Wiley, T. E.; Layden, T. J.; Perelson, A. S., Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-\(α\) therapy, Science, 282, 5386, 103-107 (1998) · doi:10.1126/science.282.5386.103
[13] Perelson, A. S.; Herrmann, E.; Micol, F.; Zeuzem, S., New kinetic models for the hepatitis C virus, Hepatology, 42, 4, 749-754 (2005) · doi:10.1002/hep.20882
[14] WHO, http://www.who.int/mediacentred/factsheets/fs204/en/
[15] Moriyama, K.; Okamoto, H.; Tsuda, F.; Mayumi, M., Reduced precore transcription and enhanced core-pregenome transcription of hepatitis B virus DNA after replacement of the precore-core promoter with sequences associated with e antigen-seronegative persistent infections, Virology, 226, 2, 269-280 (1996) · doi:10.1006/viro.1996.0655
[16] Lewin, S. R.; Ribeiro, R. M.; Walters, T.; Lau, G. K.; Bowden, S.; Locarnini, S.; Perelson, A. S., Analysis of hepatitis B viral load decline under potent therapy: Complex decay profiles observed, Hepatology, 34, 5, 1012-1020 (2001) · doi:10.1053/jhep.2001.28509
[17] Guidotti, L. G.; Rochford, R.; Chung, J.; Shapiro, M.; Purcell, R.; Chisari, F. V., Viral clearance without destruction of infected cells during acute HBV infection, Science, 284, 5415, 825-829 (1999) · doi:10.1126/science.284.5415.825
[18] Perelson, A. S., Modelling viral and immune system dynamics, Nature Reviews Immunology, 2, 1, 28-36 (2002) · doi:10.1038/nri700
[19] Dahari, H.; Shudo, E.; Ribeiro, R. M.; Perelson, A. S., Modeling complex decay profiles of hepatitis B virus during antiviral therapy, Hepatology, 49, 1, 32-38 (2009) · doi:10.1002/hep.22586
[20] Vargas-De-León, C., Stability analysis of a model for HBV infection with cure of infected cells and intracellular delay, Applied Mathematics and Computation, 219, 1, 389-398 (2012) · Zbl 1291.92105 · doi:10.1016/j.amc.2012.06.029
[21] Huang, C.; Cai, L.; Cao, J., Linear control for synchronization of a fractional-order time-delayed chaotic financial system, Chaos, Solitons & Fractals, 113, 326-332 (2018) · Zbl 1404.34088 · doi:10.1016/j.chaos.2018.05.022
[22] Rakkiyappan, R.; Velmurugan, G.; Cao, J., Stability analysis of fractional-order complex-valued neural networks with time delays, Chaos, Solitons & Fractals, 78, 297-316 (2015) · Zbl 1353.34098 · doi:10.1016/j.chaos.2015.08.003
[23] Rihan, F. A.; Abdel Rahman, D. H.; Lakshmanan, S., A time delay model of tumour-immune system interactions: global dynamics, parameter estimation, sensitivity analysis, Applied Mathematics and Computation, 232, 606-623 (2014) · Zbl 1410.92053 · doi:10.1016/j.amc.2014.01.111
[24] Huang, C.; Cao, J.; Xiao, M.; Alsaedi, A.; Alsaadi, F. E., Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders, Applied Mathematics and Computation, 293, 293-310 (2017) · Zbl 1411.37068 · doi:10.1016/j.amc.2016.08.033
[25] Pinto, C. M.; Carvalho, A. R., A latency fractional order model for HIV dynamics, Journal of Computational and Applied Mathematics, 312, 240-256 (2017) · Zbl 1352.34076 · doi:10.1016/j.cam.2016.05.019
[26] Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, 198 (1999), San Diego, Calif, USA: Academic Press, San Diego, Calif, USA · Zbl 0924.34008
[27] Li, Y.; Zhao, D.; Chen, Y.; Podlubny, I.; Zhang, C., Finite energy Lyapunov function candidate for fractional order general nonlinear systems, Communications in Nonlinear Science and Numerical Simulation, 78 (2019) · Zbl 1479.34121 · doi:10.1016/j.cnsns.2019.104886
[28] Rihan, F. A.; Al-Mdallal, Q. M.; AlSakaji, H. J.; Hashish, A., A fractional-order epidemic model with time-delay and nonlinear incidence rate, Chaos, Solitons & Fractals, 126, 97-105 (2019) · Zbl 1448.34148 · doi:10.1016/j.chaos.2019.05.039
[29] Ferdi, Y., Some applications of fractional order calculus to design digital filters for biomedical signal processing, Journal of Mechanics in Medicine and Biology, 12, 2 (2012) · doi:10.1142/S0219519412400088
[30] Huo, L.; Jiang, J.; Gong, S.; He, B., Dynamical behavior of a rumor transmission model with Holling-type II functional response in emergency event, Physica A: Statistical Mechanics and its Applications, 450, 228-240 (2016) · Zbl 1400.91469 · doi:10.1016/j.physa.2015.12.143
[31] Castellanos, V.; Chan-López, R. E., Existence of limit cycles in a three level trophic chain with Lotka-Volterra and Holling type II functional responses, Chaos, Solitons & Fractals, 95, 157-167 (2017) · Zbl 1373.92101 · doi:10.1016/j.chaos.2016.12.011
[32] Meng, X.; Li, F.; Gao, S., Global analysis and numerical simulations of a novel stochastic eco-epidemiological model with time delay, Applied Mathematics and Computation, 339, 701-726 (2018) · Zbl 1428.92113 · doi:10.1016/j.amc.2018.07.039
[33] Odibat, Z. M.; Shawagfeh, N. T., Generalized Taylor’s formula, Applied Mathematics and Computation, 186, 1, 286-293 (2007) · Zbl 1122.26006 · doi:10.1016/j.amc.2006.07.102
[34] Mao, S.; Xu, R.; Li, Y., A fractional order sirs model with standard incidence rate, Journal of Beihua University (Natural Science), 12, 4, 79-382 (2012) · Zbl 1262.92037
[35] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Mathematical Biosciences, 180, 29-48 (2002) · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[36] Ahmed, E.; El-Sayed, A. M. A.; El-Saka, H. A. A., On some RouthHurwitz conditions for fractional order differential equations and their applications in Lorenz, Rssler, Chua and Chen systems, Physics Letters A, 358, 1-4 (2006) · Zbl 1142.30303
[37] Salman, S. M.; Yousef, A. M., On a fractional-order model for HBV infection with cure of infected cells, Journal of the Egyptian Mathematical Society, 25, 4, 445-451 (2017) · Zbl 1380.92041 · doi:10.1016/j.joems.2017.06.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.