×

A new no-equilibrium chaotic system and its topological horseshoe chaos. (English) Zbl 1382.37036

Summary: A new no-equilibrium chaotic system is reported in this paper. Numerical simulation techniques, including phase portraits and Lyapunov exponents, are used to investigate its basic dynamical behavior. To confirm the chaotic behavior of this system, the existence of topological horseshoe is proven via the Poincaré map and topological horseshoe theory.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
54H20 Topological dynamics (MSC2010)
37B25 Stability of topological dynamical systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lorenz, E. N., Deterministic nonperiodic flow, Journal of the Atmospheric Sciences, 20, 2, 130-141 (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
[2] Chen, G.; Ueta, T., Yet another chaotic attractor, International Journal of Bifurcation and Chaos, 9, 7, 1465-1466 (1999) · Zbl 0962.37013 · doi:10.1142/s0218127499001024
[3] Zhang, W.; Hao, W. L., Multi-pulse chaotic dynamics of six-dimensional non-autonomous nonlinear system for a composite laminated piezoelectric rectangular plate, Nonlinear Dynamics, 73, 1-2, 1005-1033 (2013) · Zbl 1281.93051 · doi:10.1007/s11071-013-0849-0
[4] Cang, S.; Wu, A.; Wang, Z.; Xue, W.; Chen, Z., Birth of one-to-four-wing chaotic attractors in a class of simplest three-dimensional continuous memristive systems, Nonlinear Dynamics, 83, 4, 1987-2001 (2016) · Zbl 1353.37155 · doi:10.1007/s11071-015-2460-z
[5] Lazaryan, N.; Sedaghat, H., Periodic and chaotic orbits of a discrete rational system, Discrete Dynamics in Nature and Society, 2015 (2015) · Zbl 1373.39010 · doi:10.1155/2015/519598
[6] Arroyo, D.; Alvarez, G.; Li, S.; Li, C.; Nunez, J., Cryptanalysis of a discrete-time synchronous chaotic encryption system, Physics Letters A, 372, 7, 1034-1039 (2008) · Zbl 1217.94093 · doi:10.1016/j.physleta.2007.08.066
[7] Cang, S.; Wang, Z.; Chen, Z.; Jia, H., Analytical and numerical investigation of a new Lorenz-like chaotic attractor with compound structures, Nonlinear Dynamics, 75, 4, 745-760 (2014) · Zbl 1283.34054 · doi:10.1007/s11071-013-1101-7
[8] Cang, S.; Chen, Z.; Wang, Z.; Jia, H., Projective synchronisation of fractional-order memristive systems with different structures based on active control method, International Journal of Sensor Networks, 14, 2, 102-108 (2013) · doi:10.1504/IJSNET.2013.056609
[9] Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N. V.; Leonov, G. A.; Prasad, A., Hidden attractors in dynamical systems, Physics Reports-Review Section of Physics Letters, 637, 1-50 (2016) · Zbl 1359.34054 · doi:10.1016/j.physrep.2016.05.002
[10] Leonov, G. A.; Kuznetsov, N. V., Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and KALman problems to hidden chaotic attractor in Chua circuits, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 1 (2013) · Zbl 1270.34003 · doi:10.1142/s0218127413300024
[11] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Localization of hidden Chua’s attractors, Physics Letters A, 375, 23, 2230-2233 (2011) · Zbl 1242.34102 · doi:10.1016/j.physleta.2011.04.037
[12] Khan, M.; Shah, T.; Gondal, M. A., An efficient technique for the construction of substitution box with chaotic partial differential equation, Nonlinear Dynamics, 73, 3, 1795-1801 (2013) · doi:10.1007/s11071-013-0904-x
[13] Pettersson, M. P.; Iaccarino, G.; Nordstrom, J., Polynomial Chaos Methods for Hyperbolic Partial Differential Equations. Polynomial Chaos Methods for Hyperbolic Partial Differential Equations, Mathematical Engineering (2015), Springer · Zbl 1325.76004 · doi:10.1007/978-3-319-10714-1
[14] Zhang, Y.; Xiao, D.; Shu, Y.; Li, J., A novel image encryption scheme based on a linear hyperbolic chaotic system of partial differential equations, Signal Processing: Image Communication, 28, 3, 292-300 (2013) · doi:10.1016/j.image.2012.12.009
[15] Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A., Determining Lyapunov exponents from a time series, Physica D. Nonlinear Phenomena, 16, 3, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[16] Zhou, L.; Chen, F., Sil’nikov chaos of the Liu system, Chaos, 18, 1 (2008) · Zbl 1306.34070 · doi:10.1063/1.2839909
[17] Zhou, T.; Chen, G.; Čelikovský, S., Ši’lnikov chaos in the generalized Lorenz canonical form of dynamical systems, Nonlinear Dynamics, 39, 4, 319-334 (2005) · Zbl 1142.70012 · doi:10.1007/s11071-005-4195-8
[18] Xu, W.; Feng, J.; Rong, H., Melnikov’s method for a general nonlinear vibro-impact oscillator, Nonlinear Analysis, Theory, Methods & Applications, 71, 1-2, 418-426 (2009) · Zbl 1176.34052 · doi:10.1016/j.na.2008.10.120
[19] Cian, G., Some remarks on topological horseshoes and applications, Nonlinear Analysis: Real World Applications, 16, 74-89 (2014) · Zbl 1334.37008 · doi:10.1016/j.nonrwa.2013.09.007
[20] Li, Q.; Yang, X.-S., A simple method for finding topological horseshoes, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 20, 2, 467-478 (2010) · Zbl 1188.37035 · doi:10.1142/S0218127410025545
[21] Yang, X.-S., Topological horseshoes and computer assisted verification of chaotic dynamics, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 19, 4, 1127-1145 (2009) · Zbl 1168.37301 · doi:10.1142/S0218127409023548
[22] Yang, X.-S.; Tang, Y., Horseshoes in piecewise continuous maps, Chaos, Solitons & Fractals, 19, 4, 841-845 (2004) · Zbl 1053.37006 · doi:10.1016/s0960-0779(03)00202-9
[23] Li, Q.; Yang, X.-S., Chaotic dynamics in a class of three dimensional Glass networks, Chaos, 16, 3 (2006) · Zbl 1146.37328 · doi:10.1063/1.2213579
[24] Pham, V.; Vaidyanathan, S.; Volos, C.; Jafari, S.; Kuznetsov, N.; Hoang, T., A novel memristive time-delay chaotic system without equilibrium points, The European Physical Journal Special Topics, 225, 1, 127-136 (2016) · doi:10.1140/epjst/e2016-02625-8
[25] Akgul, A.; Calgan, H.; Koyuncu, I.; Pehlivan, I.; Istanbullu, A., Chaos-based engineering applications with a 3D chaotic system without equilibrium points, Nonlinear Dynamics, 84, 2, 481-495 (2016) · doi:10.1007/s11071-015-2501-7
[26] Cafagna, D.; Grassi, G., Chaos in a new fractional-order system without equilibrium points, Communications in Nonlinear Science and Numerical Simulation, 19, 9, 2919-2927 (2014) · Zbl 1510.34007 · doi:10.1016/j.cnsns.2014.02.017
[27] Wang, Z.; Cang, S.; Ochola, E. O.; Sun, Y., A hyperchaotic system without equilibrium, Nonlinear Dynamics, 69, 1-2, 531-537 (2012) · doi:10.1007/s11071-011-0284-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.