×

Design of component structure in assemblies for simultaneously regulating contact pressure distribution and natural frequencies. (English) Zbl 1495.74054

The general area of the paper is topology optimization for contact pressure scenarios. The presented method is developed to regulate contact pressure distribution and natural frequencies simultaneously, more precisely, to flatten the contact pressure distribution and increase the natural frequencies at the same time. Two alternative optimization forms based on the three-field solid isotropic material with penalization (SIMP) method are proposed where the finite element analysis is adopted and the contact behavior is described by the node-to-node contact theory. Verification of the algorithm is undertaken by case studies based on an elastic-to-elastic contact structure.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74P10 Optimization of other properties in solid mechanics
74M15 Contact in solid mechanics
74H45 Vibrations in dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

top88.m; top.m
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in MATLAB using 88 lines of code, Struct. Multidiscip. Optim., 43, 1-16 (2011) · Zbl 1274.74310
[2] Behrou, R.; Guest, J. K., Topology optimization for transient response of structures subjected to dynamic loads, (18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2017)), 3657
[3] Faggioni, M.; Samani, F. S.; Bertacchi, G.; Pellicano, F., Dynamic optimization of spur gears, Mech. Mach. Theor., 46, 544-557 (2011) · Zbl 1385.70008
[4] Hilding, D.; Klarbring, A.; Petersson, J., Optimization of Structures in Unilateral Contact (1999)
[5] Hu, D.-F.; Ji, Y.-H.; Zhao, Y., Contact static stiffness research on machine tool considering the contact surface of rolling guideways, Mech. Manuf. Tech., 2017, 196-203 (2017)
[6] Kang, B.-S.; Park, G.-J.; Arora, J. S., A review of optimization of structures subjected to transient loads, Struct. Multidiscip. Optim., 31, 81-95 (2006) · Zbl 1245.74057
[7] Kikuchi, N.; Oden, J. T., Contact Problems in Elasticity: a Study of Variational Inequalities and Finite Element Methods (1988), SIAM · Zbl 0685.73002
[8] Kim, Y.-I.; Park, G.-J., Nonlinear dynamic response structural optimization using equivalent static loads, Comput. Methods Appl. Mech. Eng., 199, 660-676 (2010) · Zbl 1227.74045
[9] Klarbring, A.; Haslinger, J., On almost constant contact stress distributions by shape optimization, Struct. Optim., 5, 213-216 (1993)
[10] Kristiansen, H.; Poulios, K.; Aage, N., Topology optimization for compliance and contact pressure distribution in structural problems with friction, Comput. Methods Appl. Mech. Eng., 364, 112915 (2020) · Zbl 1442.74171
[11] Lawry, M.; Maute, K., Level set topology optimization of problems with sliding contact interfaces, Struct. Multidiscip. Optim., 52, 1107-1119 (2015)
[12] Lawry, M.; Maute, K., Level set shape and topology optimization of finite strain bilateral contact problems, Int. J. Numer. Methods Eng., 113, 1340-1369 (2018)
[13] Li, H.; Luo, Z.; Gao, L.; Wu, J., An improved parametric level set method for structural frequency response optimization problems, Adv. Eng. Software, 126, 75-89 (2018)
[14] Li, W.; Li, Q.; Steven, G.; Xie, Y., An evolutionary shape optimization procedure for contact problems in mechanical designs, Proc. IME C J. Mech. Eng. Sci., 217, 435-446 (2003)
[15] Lin, Q. Y.; Yang, N.; Hong, J.; Liu, L.; Zhang, Y. H., An optimization design of contact interface material stiffness for improving the uniformity of the contact pressure, J. Tribol-t Asme, 142, 1-18 (2020)
[16] Myslinski, A., Piecewise constant level set method for topology optimization of unilateral contact problems, Adv. Eng. Software, 80, 25-32 (2015)
[17] Myśliński, A., Level set method for optimization of contact problems, Eng. Anal. Bound. Elem., 32, 986-994 (2008) · Zbl 1244.74102
[18] Myśliński, A., Multimaterial Topology Optimization of Contact Problems Using Phase Field Regularization (2018), American Institute of Physics Conference Series
[19] Myśliński, A.; Wróblewski, M., Structural optimization of contact problems using Cahn-Hilliard model, Comput. Struct., 180, 52-59 (2017)
[20] Niu, C.; Zhang, W.; Gao, T., Topology optimization of elastic contact problems with friction using efficient adjoint sensitivity analysis with load increment reduction, Comput. Struct., 238, 106296 (2020)
[21] Niu, C.; Zhang, W. H.; Gao, T., Topology optimization of continuum structures for the uniformity of contact pressures, Struct. Multidiscip. O, 60, 185-210 (2019)
[22] Nour‐Omid, B.; Wriggers, P., A note on the optimum choice for penalty parameters, Commun. Appl. Numer. Methods, 3, 581-585 (1987) · Zbl 0623.73108
[23] Páczelt, I.; Szabó, T., Optimal shape design for contact problems, Struct. Optim., 7, 66-75 (1994)
[24] Pedersen, N. L., Designing plates for minimum internal resonances, Struct. Multidiscip. Optim., 30, 297-307 (2005) · Zbl 1243.74146
[25] Rong, J.; Xie, Y.; Yang, X.; Liang, Q., Topology optimization of structures under dynamic response constraints, J. Sound Vib., 234, 177-189 (2000)
[26] Salajegheh, E.; Heidari, A., Optimum design of structures against earthquake by adaptive genetic algorithm using wavelet networks, Struct. Multidiscip. Optim., 28, 277-285 (2004)
[27] Shah, U.; Reck, T.; Frid, H.; Jung-Kubiak, C.; Chattopadhyay, G.; Mehdi, I.; Oberhammer, J., A 500-750 GHz RF MEMS waveguide switch, IEEE Trans. Terahertz Sci. Technol., 7, 326-334 (2017)
[28] Sherif, K.; Witteveen, W.; Puchner, K.; Irschik, H., Efficient topology optimization of large dynamic finite element systems using fatigue, AIAA J., 48, 1339-1347 (2010)
[29] Shu, L.; Wang, M. Y.; Fang, Z.; Ma, Z.; Wei, P., Level set based structural topology optimization for minimizing frequency response, J. Sound Vib., 330, 5820-5834 (2011)
[30] Sigmund, O.; Maute, K., Topology optimization approaches: a comparative review, Struct. Multidiscip. Optim., 48, 1031-1055 (2013)
[31] Strömberg, N., Topology optimization of structures with manufacturing and unilateral contact constraints by minimizing an adjustable compliance-volume product, Struct. Multidiscip. Optim., 42, 341-350 (2010) · Zbl 1274.74397
[32] Strömberg, N.; Klarbring, A., Topology optimization of structures in unilateral contact, Struct. Multidiscip. Optim., 41, 57-64 (2010) · Zbl 1274.74398
[33] Stupkiewicz, S., Extension of the node-to-segment contact element for surface-expansion-dependent contact laws, Int. J. Numer. Methods Eng., 50, 739-759 (2001) · Zbl 1004.74077
[34] Sun, W.; Li, T.; Yang, D.; Su, Q.; Huo, J., Dynamic Investigation of Aeroengine High Pressure Rotor System Considering Assembly Characteristics of Bolted Joints, 104510 (2020), Engineering Failure Analysis
[35] Svanberg, K., The method of moving asymptotes-a new method for structural optimization, Int. J. Numer. Methods Eng., 24, 359-373 (1987) · Zbl 0602.73091
[36] Tcherniak, D., Topology optimization of resonating structures using SIMP method, Int. J. Numer. Methods Eng., 54, 1605-1622 (2002) · Zbl 1034.74042
[37] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[38] Wriggers, P.; Zavarise, G., Computational Contact Mechanics (2004), John Wiley & Sons Ltd.: John Wiley & Sons Ltd. USA
[39] Yoo, K.-S.; Han, S.-Y., A modified ant colony optimization algorithm for dynamic topology optimization, Comput. Struct., 123, 68-78 (2013)
[40] Yoon, G. H., Structural topology optimization for frequency response problem using model reduction schemes, Comput. Methods Appl. Mech. Eng., 199, 1744-1763 (2010) · Zbl 1231.74366
[41] Yuksel, E.; Erturk, A. S.; Budak, E., A hybrid contact implementation framework for finite element analysis and topology optimization of machine tools, J. Manuf. Sci. Eng., 142 (2020)
[42] Zhang, W. H.; Niu, C., A linear relaxation model for shape optimization of constrained contact force problem, Comput. Struct., 200, 53-67 (2018)
[43] Zhao, J.; Wang, C., Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method, Comput. Struct., 190, 41-60 (2017)
[44] Zhou, Y. C.; Lin, Q. Y.; Hong, J.; Yang, N., Bidirectional evolutionary optimization design of material stiffness for the uniformity of the contact stress, Eur. J. Mech. A-solid., 89, 104288 (2021) · Zbl 1480.74258
[45] Zhou, Y. C.; Lin, Q. Y.; Yang, X. H.; Hong, J.; Zhang, N. J.; Zhao, F., Material stiffness optimization for contact stress distribution in frictional elastic contact problems with multiple load cases, Int. J. Mech. Mater. Des., 17, 503-519 (2021)
[46] Zhu, L.; Hou, Y.; Bouzid, A.-H.; Hong, J., On the Design of Contact Member Surface Shape of Bolted Joints to Minimize Clamping Load Loss, ASME 2018 Pressure Vessels and Piping Conference (2018), American Society of Mechanical Engineers, V002T002A027-V002T002A027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.