×

An orthogonal subspace minimization method for finding multiple solutions to the defocusing nonlinear Schrödinger equation with symmetry. (English) Zbl 1274.65305

Summary: An orthogonal subspace minimization method is developed for finding multiple (eigen) solutions to the defocusing nonlinear Schrödinger equation with symmetry. As such solutions are unstable, gradient search algorithms are very sensitive to numerical errors, will easily break symmetry, and will lead to unwanted solutions. Instead of enforcing a symmetry by the Haar projection, the authors use the knowledge of previously found solutions to build a support for the minimization search. With this support, numerical errors can be partitioned into two components, sensitive versus insensitive to the negative gradient search. Only the sensitive part is removed by an orthogonal projection. Analysis and numerical examples are presented to illustrate the method. Numerical solutions with some interesting phenomena are captured and visualized by their solution profile and contour plots.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bodurov, Derivation of the nonlinear Schrödinger equation from first principles, Ann Fond Louis de Broglie 30 pp 1– (2005) · Zbl 1329.81036
[2] Bao, Computing the ground state solution of Bose-Einstein condensates by normalized gradient flow, SIAM J Sci Comp 25 pp 1674– (2004) · Zbl 1061.82025 · doi:10.1137/S1064827503422956
[3] Bao, Ground, symmetric and central vortex states in rotating Bose-Einstein condensates, Comm Math Sci 3 pp 57– (2005) · Zbl 1073.82004 · doi:10.4310/CMS.2005.v3.n1.a5
[4] Garcia-Ripoll, A quasi-local Gross-Pitaevskii equation for attractive Bose-Einstein condensate, Math Comput Simu 62 pp 21– (2003) · Zbl 1034.35126 · doi:10.1016/S0378-4754(02)00190-8
[5] Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento 20 pp 454– (1961) · Zbl 0100.42403 · doi:10.1007/BF02731494
[6] Komineas, Static solitary waves in axisymmetric Bose-Einstein condensates, Laser Phys 14 pp 571– (2004)
[7] Pitaevskii, Vortex lines in an imperfect Bose gas, Sov Phys JETP 13 pp 451– (1961)
[8] Agrawal, Nonlinear Fiber optics (2013) · Zbl 1024.78514
[9] Calaman, Projected gradient methods for linear constrained problems, Math Program 39 pp 93– (1987) · Zbl 0634.90064 · doi:10.1007/BF02592073
[10] Garcia-Ripoll, Optimizing Schrödinger functionals using Sobolev gradients: applications to quantum mechanics and nonlinear optics, SIAM J Sci Comp 23 pp 1315– (2001) · Zbl 0999.65058 · doi:10.1137/S1064827500377721
[11] Kazemi, Minimizing the Gross-Pitaevskii energy functional with the Sobolev gradient-analytical and numerical results, Int J Comput Methods 7 pp 453– (2010) · Zbl 1267.81294 · doi:10.1142/S0219876210002301
[12] Chen, Contemporary Mathematics pp 69– (2004)
[13] Chen, Algorithms and visualization for solutions of nonlinear elliptic equation, Part I: Dirichlet Problem, Int J Bifur Chaos 7 pp 1565– (2000) · Zbl 1090.65549 · doi:10.1142/S0218127400001006
[14] Chang, Computing multiple peak solutions for Bose-Einstein condensates in optical lattics, Comput Phys Commun 180 pp 926– (2009) · Zbl 1198.81081 · doi:10.1016/j.cpc.2008.12.040
[15] Lakoba, A generalized Petviashvili iteration method for scalar and vector Hamiltonian equations with arbitrary form of nonlinearity, J Comput Phys 226 pp 1668– (2007) · Zbl 1126.35052 · doi:10.1016/j.jcp.2007.06.009
[16] Lakoba, A mode elimination technique to improve convergence of iteration methods for finding solitary waves, J Comput Phys 226 pp 1693– (2007) · Zbl 1127.65079 · doi:10.1016/j.jcp.2007.06.010
[17] Yang, Newton-conjugate-gradient methods for solitary wave computations, J Comput Phys 228 pp 7007– (2009) · Zbl 1175.65123 · doi:10.1016/j.jcp.2009.06.012
[18] Yang, Accelerated imaginary-time evolution methods for the computation of solitary waves, Stud Appl Math 120 pp 265– (2008) · Zbl 1191.35227 · doi:10.1111/j.1467-9590.2008.00398.x
[19] Rabinowitz, CBMS regional conference series in Mathematics no. 65 (1986)
[20] Struwe, Variational methods (2008)
[21] Willem, Minimax theorems (1996) · doi:10.1007/978-1-4612-4146-1
[22] Li, A minimax method for finding multiple critical points and its applications to semilinear elliptic PDEs, SIAM J Sci Comput 23 pp 840– (2001) · Zbl 1002.35004 · doi:10.1137/S1064827599365641
[23] Li, Convergence results of a local minimax method for finding multiple critical points, SIAM J Sci Comput 24 pp 865– (2002) · Zbl 1040.58003 · doi:10.1137/S1064827500379732
[24] Yao, Numerical methods for computing nonlinear eigenpairs. Part I. Iso-homogenous cases, SIAM J Sci Comput 29 pp 1355– (2007) · Zbl 1156.65055 · doi:10.1137/060651859
[25] Yao, Numerical methods for computing nonlinear eigenpairs. Part II. Non iso-homogenous cases, SIAM J Sci Comput 30 pp 937– (2008) · Zbl 1183.65140 · doi:10.1137/060656425
[26] Zhou, Global sequence convergence of a local minimax method for finding multiple solutions in Banach spaces, Numer Funct Anal Optim 32 pp 1365– (2011) · Zbl 1235.65137 · doi:10.1080/01630563.2011.597630
[27] Zeidler, Ljusternik-Schnirelman theory on general level sets, Math Nachr 129 pp 238– (1986) · Zbl 0608.58014 · doi:10.1002/mana.19861290121
[28] Wang, An efficient and stable method for computing multiple saddle points with symmetries, SIAM J Numer Anal 43 pp 891– (2005) · Zbl 1092.65114 · doi:10.1137/S0036142903416626
[29] Wang, A local minimax-Newton method for finding critical points with symmetries, SIAM J Numer Anal 42 pp 1745– (2004) · Zbl 1087.65565 · doi:10.1137/S0036142903431675
[30] Chan, Arc-length continuation and multi-grid techniques for nonlinear elliptic eigenvalue problems, SIAM J Sci Stat Comput 3 pp 173– (1982) · Zbl 0497.65028 · doi:10.1137/0903012
[31] Schechter, Linking methods in critical point theory (1999) · Zbl 0915.35001 · doi:10.1007/978-1-4612-1596-7
[32] Watanabe, Numerical method for nonlinear eigenvalue problems, Phys Scr T2/1 pp 142– (1982) · doi:10.1088/0031-8949/1982/T2A/017
[33] Yao, A minimax method for finding multiple critical points in Banach spaces and its application to quasilinear elliptic PDE, SIAM J Sci Comput 26 pp 1796– (2005) · Zbl 1078.58009 · doi:10.1137/S1064827503430503
[34] Zhou, A local min-orthogonal method for finding multiple saddle points, J Math Anal Appl 291 pp 66– (2004) · Zbl 1274.35085 · doi:10.1016/j.jmaa.2003.10.043
[35] Zhou, Instability analysis of saddle points by a local minimax method, Math Comput 74 pp 1391– (2005) · Zbl 1075.58007 · doi:10.1090/S0025-5718-04-01694-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.