×

Decoy-state reference-frame-independent quantum key distribution with the single-photon-added coherent source. (English) Zbl 1402.81119

Summary: Reference-frame-independent quantum key distribution (RFI-QKD) can generate secure keys even when the reference frames drift slowly. Here, we propose to realize RFI-QKD with the single-photon-added coherent source (SPACS). Simulation results show that compared with the weak coherent state and the heralded single-photon source, SPACS can remarkably improve the key generation rate and transmission distance of RFI-QKD. Moreover, our results show the significance of optimized parameters. When taking statistical fluctuations into consideration, RFI-QKD with SPACS can still achieve very good performance.

MSC:

81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
94A40 Channel models (including quantum) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing. IEEE, New York, pp. 175-179 (1984) · Zbl 1306.81030
[2] Bruß, D., Optimal eavesdropping in quantum cryptography with six states, Phys. Rev. Lett., 81, 3018, (1998) · doi:10.1103/PhysRevLett.81.3018
[3] Lo, H-K; Chau, H-F; Ardehali, M., Efficient quantum key distribution scheme and a proof of its unconditional security, J. Cryptol., 18, 133-165, (2005) · Zbl 1084.68047 · doi:10.1007/s00145-004-0142-y
[4] Zhao, Y.; Qi, B.; Ma, X-F; Lo, H-K; Qian, L., Experimental quantum key distribution with decoy states, Phys. Rev. Lett., 96, 070502, (2006) · doi:10.1103/PhysRevLett.96.070502
[5] Peng, C-Z; Zhang, J.; Yang, D.; Gao, W-B; Ma, H-X; Yin, H.; Pan, J-W, Experimental long-distance decoy-state quantum key distribution based on polarization encoding, Phys. Rev. Lett., 98, 010505, (2007) · doi:10.1103/PhysRevLett.98.010505
[6] Yuan, Z-L; Sharpe, AW; Shields, AJ, Unconditionally secure one-way quantum key distribution using decoy pulses, Appl. Phys. Lett., 90, 011118, (2007) · doi:10.1063/1.2430685
[7] Wang, Q.; Wang, X-B; Guo, G-C, Practical decoy-state method in quantum key distribution with a heralded single-photon source, Phys. Rev. A, 75, 012312, (2007) · doi:10.1103/PhysRevA.75.012312
[8] Schmitt-Manderbach, T.; Weier, H.; Fürst, M.; Ursin, R.; Tiefenbacher, F.; Scheidl, T.; Perdigues, J.; Sodnik, Z.; Kurtsiefer, C.; Rarity, JG; Zeilinger, A.; Weinfurter, H., Experimental demonstration of free-space decoy-state quantum key distribution over 144 km, Phys. Rev. Lett., 98, 010504, (2007) · doi:10.1103/PhysRevLett.98.010504
[9] Rosenberg, D.; Harrington, JW; Rice, PR; Hiskett, PA; Peterson, CG; Hughes, RJ; Lita, AE; Nam, SW; Nordholt, JE, Long-distance decoy-state quantum key distribution in optical fiber, Phys. Rev. Lett., 98, 010503, (2007) · doi:10.1103/PhysRevLett.98.010503
[10] Wang, S.; Zhang, S-L; Li, H-W; Yin, Z-Q; Zhao, Y-B; Chen, W.; Han, Z-F; Guo, G-C, Decoy-state theory for the heralded single-photon source with intensity fluctuations, Phys. Rev. A, 79, 062309, (2009) · doi:10.1103/PhysRevA.79.062309
[11] Wang, Q.; Wang, X-B, Simulating of the measurement-device-independent quantum key distribution with phase randomized general sources, Sci. Rep., 4, 04612, (2014) · doi:10.1038/srep04612
[12] Wang, Q.; Zhang, C-H; Wang, X-B, Scheme for realizing passive quantum key distribution with heralded single-photon sources, Phys. Rev. A, 93, 032312, (2016) · doi:10.1103/PhysRevA.93.032312
[13] Laing, A.; Scarani, V.; Rarity, JG; O’Brien, J-L, Reference-frame-independent quantum key distribution, Phys. Rev. A, 82, 012304, (2010) · doi:10.1103/PhysRevA.82.012304
[14] Wabnig, J.; Bitauld, D.; Li, HW; Laing, A.; O’Brien, JL; Niskanen, AO, Demonstration of free-space reference frame independent quantum key distribution, New J. Phys., 15, 073001, (2013) · doi:10.1088/1367-2630/15/7/073001
[15] Zhang, P.; Aungskunsiri, K.; Martín-López, E.; Wabnig, J.; Lobino, M.; Nock, RW; Munns, J.; Bonneau, D.; Jiang, P.; Li, HW; Laing, A.; Rarity, JG; Niskanen, AO; Thompson, MG; O’Brien, JL, Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client, Phys. Rev. Lett., 112, 130501, (2014) · doi:10.1103/PhysRevLett.112.130501
[16] Yin, Z-Q; Wang, S.; Chen, W.; Li, H-W; Guo, G-C; Han, Z-F, Reference-free-independent quantum key distribution immune to detector side channel attacks, Quantum Inf. Process, 13, 1237-1244, (2014) · doi:10.1007/s11128-013-0726-2
[17] Wang, C.; Sun, S-H; Ma, X-C; Tang, G-Z; Liang, L-M, Reference-frame-independent quantum key distribution with source flaws, Phys. Rev. A, 92, 042319, (2015) · doi:10.1103/PhysRevA.92.042319
[18] Zhang, C-M; Zhu, J-R; Wang, Q., Practical decoy-state reference-frame-independent measurement-device-independent quantum key distribution, Phys. Rev. A, 95, 032309, (2017) · doi:10.1103/PhysRevA.95.032309
[19] Zhang, C-M; Zhu, J-R; Wang, Q., Decoy-state reference-frame-independent measurement-device-independent quantum key distribution with biased bases, J. Light. Technol., 35, 4574-4578, (2017) · doi:10.1109/JLT.2017.2749402
[20] Zhu, J-R; Zhang, C-M; Wang, Q., Biased decoy-state reference-frame-independent quantum key distribution, Eur. Phys. J. D, 79, 319, (2017) · doi:10.1140/epjd/e2017-80219-2
[21] Zhang, C-M; Zhu, J-R; Wang, Q., Practical reference-frame-independent quantum key distribution systems against the worst relative rotation of reference frames, J. Phys. Commun., 2, 055029, (2018) · doi:10.1088/2399-6528/aac5d4
[22] Liang, W-Y; Wang, S.; Li, H-W; Yin, Z-Q; Chen, W.; Yao, Y.; Han, Z-F, Proof-of-principle experiment of reference-frame-independent quantum key distribution with phase coding, Sci. Rep., 4, 3617, (2014) · doi:10.1038/srep03617
[23] Wang, C.; Song, X-T; Yin, Z-Q; Wang, S.; Chen, W.; Zhang, C-M; Guo, G-C; Han, Z-F, Phase-reference-free experiment of measurement-device-independent quantum key distribution, Phys. Rev. Lett., 115, 160502, (2015) · doi:10.1103/PhysRevLett.115.160502
[24] Wang, C.; Yin, Z-Q; Wang, S.; Chen, W.; Guo, G-C; Han, Z-F, Measurement-device-independent quantum key distribution robust against environmental disturbances, Optica, 4, 1016-1023, (2017) · doi:10.1364/OPTICA.4.001016
[25] Liu, K.; Li, J.; Zhu, J-R; Zhang, C-M; Wang, Q., Decoy-state reference-frame-independent quantum key distribution with both source errors and statistical fluctuations, Chin. Phys. B, 26, 120302, (2017) · doi:10.1088/1674-1056/26/12/120302
[26] Li, J-J; Wang, Y.; Li, H-W; Peng, P.; Zhou, C.; Jiang, M-S; Ma, H-X; Feng, L-X; Bao, W-S, Passive decoy-state reference-frame-independent quantum key distribution with heralded single-photon source, Chin. Phys. Lett., 34, 120301, (2017) · doi:10.1088/0256-307X/34/12/120301
[27] Hwang, WY, Quantum key distribution with high loss: toward global secure communication, Phys. Rev. Lett., 91, 057901, (2003) · doi:10.1103/PhysRevLett.91.057901
[28] Wang, X-B, Beating the photon-number-splitting attack in practical quantum cryptography, Phys. Rev. Lett., 94, 230503, (2005) · doi:10.1103/PhysRevLett.94.230503
[29] Lo, H-K; Ma, X-F; Chen, K., Decoy state quantum key distribution, Phys. Rev. Lett., 94, 230504, (2005) · doi:10.1103/PhysRevLett.94.230504
[30] Agarwal, GS; Tara, K., Nonclassical properties of states generated by the excitations on a coherent state, Phys. Rev. A, 43, 492, (1991) · doi:10.1103/PhysRevA.43.492
[31] Zavatta, A.; Viciani, S.; Bellini, M., Quantum-to-classical transition with single-photon-added coherent states of light, Science, 306, 660, (2004) · doi:10.1126/science.1103190
[32] Zavatta, A.; Viciani, S.; Bellini, M., Single-photon excitation of a coherent state: catching the elementary step of stimulated light emission, Phys. Rev. A, 72, 023820, (2005) · doi:10.1103/PhysRevA.72.023820
[33] Wang, D.; Li, M.; Zhu, F.; Yin, Z-Q; Chen, W.; Han, Z-F; Guo, G-C; Wang, Q., Quantum key distribution with the single-photon-added coherent source, Phys. Rev. A, 90, 062315, (2014) · doi:10.1103/PhysRevA.90.062315
[34] Wang, D.; Li, M.; Guo, G-C; Wang, Q., An improved scheme on decoy-state method of measurement-device-independent quantum key distribution, Sci. Rep., 5, 15130, (2015) · doi:10.1038/srep15130
[35] Wang, X-B; Peng, C-Z; Zhang, J.; Yang, L.; Pan, J-W, General theory of decoy-state quantum cryptography with source errors, Phys. Rev. A, 77, 042311, (2008) · doi:10.1103/PhysRevA.77.042311
[36] Wang, X-B; Yang, L.; Peng, C-Z; Pan, J-W, Decoy-state quantum key distribution with both source errors and statistical fluctuations, New J. Phys., 11, 075006, (2009) · doi:10.1088/1367-2630/11/7/075006
[37] Ma, X.; Qi, B.; Zhao, Y.; Lo, H-K, Practical decoy state for quantum key distribution, Phys. Rev. A, 72, 012326, (2005) · doi:10.1103/PhysRevA.72.012326
[38] Ma, X.; Fung, C-HF; Razavi, M., Statistical fluctuation analysis for measurement-device-independent quantum key distribution, Phys. Rev. A, 86, 052305, (2012) · doi:10.1103/PhysRevA.86.052305
[39] Xu, F.; Xu, H.; Lo, H-K, Protocol choice and parameter optimization in decoy-state measurement-device-independent quantum key distribution, Phys. Rev. A, 89, 052333, (2014) · doi:10.1103/PhysRevA.89.052333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.