zbMATH — the first resource for mathematics

Solving Volterra-Lotka systems with diffusion by monotone iteration. (English) Zbl 0735.35060
An abstract theorem concerning a monotone iteration method in a partially ordered linear space is presented first. Then the method is applied to a stationary Volterra-Lotka system in a convex domain \(\Omega\): \[ \alpha\Delta u+au-bu^ 2+cuv=0,\;\beta\Delta v+dv-ev^ 2+fuv=0 \hbox{ in } \Omega \hbox{ and } u=v=0 \hbox{ on } \partial\Omega, \] with already known subsolutions \(\b{u}_ 0\), \(\b{v}_ 0\) and supersolutions \(\bar u_ 0\), \(\bar v_ 0\) as an initial step. As a result, solutions \(u^*,v^*\in C^ 2(\Omega)\cap C(\bar\Omega)\) are obtained in order- intervals \([\b{u}_ 0,\bar u_ 0]\) and \([\b{v}_ 0,\bar v_ 0]\) respectively under appropriate assumptions on the positive constants \(\alpha\), \(\beta\), \(a\), \(b\), \(d\), \(e\) and the real ones \(c\), \(f\). An extended predator-prey system is also considered. One numerical example is given.
35J65 Nonlinear boundary value problems for linear elliptic equations
92D25 Population dynamics (general)
Full Text: DOI
[1] Blat, J., Brown, K. J.: Bifurcation of steady-state solutions in predator-prey and competition systems. Proc. Roy. Soc. Edinb. 97A, 21-34 (1984) · Zbl 0554.92012
[2] Dancer, E. N.: On positive solutions of some pairs of differential equations. Trans. Am. Math. Soc. 284, 729-743 (1984) · Zbl 0524.35056 · doi:10.1090/S0002-9947-1984-0743741-4
[3] Förster, H., Witsch, K.: Multigrid software for the solution of elliptic problems on rectangular domains: MG00 (Release 1). In: Hackbusch, W., Trottenberg, U. (eds.) (Lect. Notes Math. vol. 960, pp. 427-460). Berlin Heidelberg New York: Springer 1982
[4] Förster, H., Witsch, K.: On efficient multigrid software for elliptic problems on rectangular domains. Math. Comp. Simul. 23, 293-298 (1981) · doi:10.1016/0378-4754(81)90087-2
[5] Goh, B. S.: Management and analysis of biological populations. Amsterdam Oxford New York: Elsevier 1980
[6] Hadeler, K. P., Rothe, F., Vogt, H.: Stationary solutions of reaction-diffusion equations. Math. Meth. Appl. Sci. 1, 418-431 (1979) · Zbl 0424.35047 · doi:10.1002/mma.1670010307
[7] Huy, C. U., McKenna, P. J., Walter, W.: Finite-difference approximations to the Dirichlet problem for elliptic systems. Numer Math. 49, 227-237 (1986) · Zbl 0602.65068 · doi:10.1007/BF01389626
[8] Korman, P., Leung, A. W.: A general monotone scheme for elliptic systems with applications to ecological models. Proc. Roy. Soc. Edinb. 102A, 315-325 (1986) · Zbl 0606.35034
[9] Korman, P., Leung, A. W.: On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion. Appl. Anal. 26, 145-160 (1987) · Zbl 0639.35026 · doi:10.1080/00036818708839706
[10] Krasnoselski, M.: Positive solutions of operator equations. Groningen: Noordhoff 1964
[11] Leung, A.: Limiting behaviour for a prey-predator model with diffusion and crowding effects. J. Math. Biol. 6, 87-93 (1978) · Zbl 0386.92011 · doi:10.1007/BF02478520
[12] McKenna, P. J., Walter, W.: On the Dirichlet problem for elliptic systems. Appl. Anal. 21, 207-224 (1986) · Zbl 0593.35042 · doi:10.1080/00036818608839592
[13] Metzler, W.: Dynamische Systeme in der Ökologie. Stuttgart: Teubner 1987 · Zbl 0631.92022
[14] Ortega, J. M., Rheinboldt, W. C.: Iterative solutions of nonlinear equations in several variables. New York: Academic Press 1970 · Zbl 0241.65046
[15] Potra, F. A.: Newton-like methods with monotone convergence for solving nonlinear operator equations. Nonlinear Anal. Theory Methods Appl. 11, 697-717 (1987) · Zbl 0633.65050 · doi:10.1016/0362-546X(87)90037-X
[16] Potra, F. A., Rheinboldt, W. C.: On the monotone convergence of Newton’s method. Computing 36, 81-90 (1986) · Zbl 0572.65034 · doi:10.1007/BF02238194
[17] Rothe, F.: Convergence to the equilibrium state in the Volterra-Lotka diffusion equations. J. Math. Biol. 3, 319-324 (1976) · Zbl 0355.92013
[18] Southwood, T. R. E.: Ecological methods, 2nd edn. New York: Wiley 1978
[19] Voller, R. L.: Monotonieeigenschaften von Abbildungen and Einschlie?ung von Lösungen nichtlinearer Operatorgleichungen. Habilitationsschrift, Düsseldorf 1989 · Zbl 0734.47044
[20] Voss, H.: Ein neues Verfahren zur Einschlie?ung der Losungen von Operatorgleichungen. Z. Angew. Math. Mech. 56, 218-219 (1976) · Zbl 0341.65040 · doi:10.1002/zamm.19760560509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.