×

Wilson lines in AdS/dCFT. (English) Zbl 1458.81037

Summary: We consider the expectation value of Wilson lines in two defect versions of \(\mathcal{N} = 4\) SYM, both with supersymmetry completely broken, where one is described in terms of an integrable boundary state, the other one not. For both cases, imposing a certain double scaling limit, we find agreement to two leading orders between the expectation values calculated from respectively the field theory- and the string theory side of the AdS/dCFT correspondence.

MSC:

81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

Software:

DLMF
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] de Leeuw, M.; Kristjansen, C.; Zarembo, K., One-point functions in defect CFT and integrability, J. High Energy Phys., 08, Article 098 pp. (2015) · Zbl 1388.81228
[2] De Leeuw, M.; Kristjansen, C.; Linardopoulos, G., Scalar one-point functions and matrix product states of AdS/dCFT, Phys. Lett. B, 781, 238-243 (2018) · Zbl 1398.81226
[3] de Leeuw, M.; Kristjansen, C.; Vardinghus, K. E., A non-integrable quench from AdS/dCFT, Phys. Lett. B, 798, Article 134940 pp. (2019) · Zbl 1434.81099
[4] Piroli, L.; Pozsgay, B.; Vernier, E., What is an integrable quench?, Nucl. Phys. B, 925, 362-402 (2017) · Zbl 1375.81191
[5] Nagasaki, K.; Yamaguchi, S., Expectation values of chiral primary operators in holographic interface CFT, Phys. Rev. D, 86, Article 086004 pp. (2012)
[6] Kristjansen, C.; Semenoff, G. W.; Young, D., Chiral primary one-point functions in the D3-D7 defect conformal field theory, J. High Energy Phys., 01, Article 117 pp. (2013) · Zbl 1342.81503
[7] Gimenez Grau, A.; Kristjansen, C.; Volk, M.; Wilhelm, M., A quantum check of non-supersymmetric AdS/dCFT, J. High Energy Phys., 01, Article 007 pp. (2019) · Zbl 1409.83207
[8] Gimenez-Grau, A.; Kristjansen, C.; Volk, M.; Wilhelm, M., A quantum framework for AdS/dCFT through fuzzy spherical harmonics on \(S^4\), J. High Energy Phys., 04, Article 132 pp. (2020) · Zbl 1436.83095
[9] Buhl-Mortensen, I.; de Leeuw, M.; Ipsen, A. C.; Kristjansen, C.; Wilhelm, M., One-loop one-point functions in gauge-gravity dualities with defects, Phys. Rev. Lett., 117, 23, Article 231603 pp. (2016)
[10] Buhl-Mortensen, I.; de Leeuw, M.; Ipsen, A. C.; Kristjansen, C.; Wilhelm, M., A quantum check of AdS/dCFT, J. High Energy Phys., 01, Article 098 pp. (2017) · Zbl 1373.81316
[11] Nagasaki, K.; Tanida, H.; Yamaguchi, S., Holographic interface-particle potential, J. High Energy Phys., 01, Article 139 pp. (2012) · Zbl 1306.81262
[12] de Leeuw, M.; Ipsen, A. C.; Kristjansen, C.; Wilhelm, M., One-loop Wilson loops and the particle-interface potential in AdS/dCFT, Phys. Lett. B, 768, 192-197 (2017) · Zbl 1370.81125
[13] Preti, M.; Trancanelli, D.; Vescovi, E., Quark-antiquark potential in defect conformal field theory, J. High Energy Phys., 10, Article 079 pp. (2017) · Zbl 1383.81252
[14] Bonansea, S.; Davoli, S.; Griguolo, L.; Seminara, D., Circular Wilson loops in defect \(\mathcal{N} = 4\) SYM: phase transitions, double-scaling limits and OPE expansion, J. High Energy Phys., 03, Article 084 pp. (2020) · Zbl 1435.81204
[15] Aguilera-Damia, J.; Correa, D. H.; Giraldo-Rivera, V. I., Circular Wilson loops in defect conformal field theory, J. High Energy Phys., 03, Article 023 pp. (2017) · Zbl 1377.81147
[16] Constable, N. R.; Myers, R. C.; Tafjord, O., Non-abelian brane intersections, J. High Energy Phys., 06, Article 023 pp. (2001)
[17] Castelino, J.; Lee, S.; Taylor, W., Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B, 526, 334-350 (1998) · Zbl 1031.81594
[18] de Leeuw, M.; Kristjansen, C.; Linardopoulos, G., One-point functions of non-protected operators in the SO(5) symmetric D3-D7 dCFT, J. Phys. A, 50, 25, Article 254001 pp. (2017) · Zbl 1370.81152
[19] Olver, F. W.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions (2010), Cambridge University Press, Hardback and CD-ROM · Zbl 1198.00002
[20] Myers, R. C.; Wapler, M. C., Transport properties of holographic defects, J. High Energy Phys., 12, Article 115 pp. (2008) · Zbl 1329.81321
[21] Rey, S.-J.; Yee, J.-T., Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C, 22, 379-394 (2001) · Zbl 1072.81555
[22] Maldacena, J. M., Wilson loops in large N field theories, Phys. Rev. Lett., 80, 4859-4862 (1998) · Zbl 0947.81128
[23] Drukker, N.; Gross, D. J.; Ooguri, H., Wilson loops and minimal surfaces, Phys. Rev. D, 60, Article 125006 pp. (1999)
[24] Gross, D. J.; Ooguri, H., Aspects of large N gauge theory dynamics as seen by string theory, Phys. Rev. D, 58, Article 106002 pp. (1998)
[25] S. Bonansea, R. Sanchéz, Work in progress.
[26] Wang, Y., Taming defects in \(\mathcal{N} = 4\) super-Yang-Mills (March 2020) · Zbl 1454.81234
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.