×

Effects of a subadiabatic layer on convection and dynamos in spherical wedge simulations. (English) Zbl 1521.85012

Summary: We consider the effect of a subadiabatic layer at the base of the convection zone on convection itself and the associated large-scale dynamos in spherical wedge geometry. We use a heat conduction prescription based on the Kramers opacity law which allows the depth of the convection zone to dynamically adapt to changes in the physical characteristics such as rotation rate and magnetic fields. We find that the convective heat transport is strongly concentrated towards the equatorial and polar regions in the cases without a substantial radiative layer below the convection zone. The presence of a stable layer below the convection zone significantly reduces the anisotropy of radial enthalpy transport. Furthermore, the dynamo solutions are sensitive to subtle changes in the convection zone structure. We find that the kinetic helicity changes sign in the deeper parts of the convection zone at high latitudes in all runs. This region expands progressively towards the equator in runs with a thicker stably stratified layer.

MSC:

85A30 Hydrodynamic and hydromagnetic problems in astronomy and astrophysics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Augustson, K.; Brun, A. S.; Miesch, M.; Toomre, J., Grand minima and equatorward propagation in a cycling stellar convective dynamo, Astrophys. J., 809, 149 (2015) · doi:10.1088/0004-637X/809/2/149
[2] Barekat, A.; Brandenburg, A., Near-polytropic stellar simulations with a radiative surface, Astron. Astrophys., 571, A68 (2014) · doi:10.1051/0004-6361/201322461
[3] Barekat, A.; Schou, J.; Gizon, L., The radial gradient of the near-surface shear layer of the Sun, Astron. Astrophys., 570, L12 (2014) · doi:10.1051/0004-6361/201424839
[4] Basu, S., Global seismology of the Sun, Living Rev. Solar Phys., 13, 234 (2016) · doi:10.1007/s41116-016-0003-4
[5] Bekki, Y.; Hotta, H.; Yokoyama, T., Convective velocity suppression via the enhancement of the subadiabatic layer: Role of the effective Prandtl number, Astrophys. J., 851, 74 (2017) · doi:10.3847/1538-4357/aa9b7f
[6] Brandenburg, A., The case for a distributed solar dynamo shaped by near-surface shear, Astrophys. J., 625, 539-547 (2005) · doi:10.1086/429584
[7] Brandenburg, A., Stellar mixing length theory with entropy rain, Astrophys. J., 832, 6 (2016) · doi:10.3847/0004-637X/832/1/6
[8] Brandenburg, A.; Moss, D.; Tuominen, I., Stratification and thermodynamics in mean-field dynamos, Astron. Astrophys., 265, 328-344 (1992)
[9] Brandenburg, A., Nordlund, A. and Stein, R.F., Astrophysical convection and dynamos. In Geophysical and Astrophysical Convection, Contributions from a Workshop Sponsored by the Geophysical Turbulence Program at the National Center for Atmospheric Research, October, 1995 edited by P.A. Fox and R.M. Kerr, pp.85-105, Aug. 2000 (Gordon and Breach Science: The Netherlands).
[10] Brandenburg, A.; Tuominen, I.; Nordlund, A.; Pulkkinen, P.; Stein, R. F., 3-D simulation of turbulent cyclonic magneto-convection, Astron. Astrophys., 232, 277-291 (1990)
[11] Brown, B. P.; Browning, M. K.; Brun, A. S.; Miesch, M. S.; Toomre, J., Persistent magnetic wreaths in a rapidly rotating Sun, Astrophys. J., 711, 424-438 (2010) · doi:10.1088/0004-637X/711/1/424
[12] Browning, M. K.; Miesch, M. S.; Brun, A. S.; Toomre, J., Dynamo action in the solar convection zone and tachocline: Pumping and organization of toroidal fields, Astrophys. J. Lett., 648, L157-L160 (2006) · doi:10.1086/507869
[13] Brummell, N. H.; Clune, T. L.; Toomre, J., Penetration and overshooting in turbulent compressible convection, Astrophys. J., 570, 825-854 (2002) · doi:10.1086/339626
[14] Brun, A. S.; Browning, M. K., Magnetism, dynamo action and the solar-stellar connection, Liv. Rev. Sol. Phys., 14, 9 (2017)
[15] Brun, A. S.; Miesch, M. S.; Toomre, J., Global-scale turbulent convection and magnetic dynamo action in the solar envelope, Astrophys. J., 614, 1073-1098 (2004) · doi:10.1086/423835
[16] Brun, A. S.; Palacios, A., Numerical simulations of a rotating red giant star. I. Three-dimensional models of turbulent convection and associated mean flows, Astrophys. J., 702, 1078-1097 (2009) · doi:10.1088/0004-637X/702/2/1078
[17] Brun, A. S.; Strugarek, A.; Varela, J.; Matt, S. P.; Augustson, K. C.; Emeriau, C.; DoCao, O. L.; Brown, B.; Toomre, J., On differential rotation and overshooting in solar-like stars, Astrophys. J., 836, 192 (2017) · doi:10.3847/1538-4357/aa5c40
[18] Brun, A. S.; Toomre, J., Turbulent convection under the influence of rotation: Sustaining a strong differential rotation, Astrophys. J., 570, 865-885 (2002) · doi:10.1086/339228
[19] Busse, F. H., Differential rotation in stellar convection zones, Astrophys. J., 159, 629 (1970) · doi:10.1086/150337
[20] Cattaneo, F.; Brummell, N. H.; Toomre, J.; Malagoli, A.; Hurlburt, N. E., Turbulent compressible convection, Astrophys. J., 370, 282-294 (1991) · doi:10.1086/169814
[21] Chan, K. L.; Gigas, D., Downflows and entropy gradient reversal in deep convection, Astrophys. J. Lett., 389, L87-L90 (1992) · doi:10.1086/186355
[22] Cossette, J. F.; Rast, M. P., Supergranulation as the Largest Buoyantly Driven Convective Scale of the Sun, Astrophys. J. Lett., 829, L17 (2016) · doi:10.3847/2041-8205/829/1/L17
[23] Deardorff, J. W., The counter-gradient heat flux in the lower atmosphere and in the laboratory, J. Atmosph. Sci., 23, 503-506 (1966) · doi:10.1175/1520-0469(1966)023<0503:TCGHFI>2.0.CO;2
[24] Deluca, E. E.; Gilman, P. A., Dynamo theory for the interface between the convection zone and the radiative interior of a star: Part I model equations and exact solutions, Geophysical and Astrophysical Fluid Dynamics, 37, 85-127 (1986) · Zbl 0624.76044 · doi:10.1080/03091928608210092
[25] Demarque, P.; Guenther, D. B.; Li, L. H.; Mazumdar, A.; Straka, C. W., YREC: The Yale rotating stellar evolution code. Non-rotating version, seismology applications, Astrophys. and Space Sci., 316, 31-41 (2008) · doi:10.1007/s10509-007-9698-y
[26] Dikpati, M.; Charbonneau, P., A Babcock-Leighton flux transport dynamo with solar-like differential rotation, Astrophys. J., 518, 508-520 (1999) · doi:10.1086/307269
[27] Duarte, L. D.V.; Wicht, J.; Browning, M. K.; Gastine, T., Helicity inversion in spherical convection as a means for equatorward dynamo wave propagation, Monthly Notices Roy. Astron. Soc., 456, 1708-1722 (2016) · doi:10.1093/mnras/stv2726
[28] Fan, Y.; Fang, F., A simulation of convective dynamo in the solar convective envelope: Maintenance of the solar-like differential rotation and emerging flux, Astrophys. J., 789, 35 (2014) · doi:10.1088/0004-637X/789/1/35
[29] Featherstone, N. A.; Hindman, B. W., The emergence of solar supergranulation as a natural consequence of rotationally constrained interior convection, Astrophys. J. Lett., 830, L15 (2016) · doi:10.3847/2041-8205/830/1/L15
[30] Featherstone, N. A.; Hindman, B. W., The spectral amplitude of stellar convection and its scaling in the high-Rayleigh-number regime, Astrophys. J., 818, 32 (2016) · doi:10.3847/0004-637X/818/1/32
[31] Gastine, T.; Yadav, R. K.; Morin, J.; Reiners, A.; Wicht, J., From solar-like to antisolar differential rotation in cool stars, Monthly Notices Roy. Astron. Soc., 438, L76-L80 (2014) · doi:10.1093/mnrasl/slt162
[32] Ghizaru, M.; Charbonneau, P.; Smolarkiewicz, P. K., Magnetic cycles in global large-eddy simulations of solar convection, Astrophys. J. Lett., 715, L133-L137 (2010) · doi:10.1088/2041-8205/715/2/L133
[33] Gilman, P. A., Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I, Geophys. Astrophys. Fluid Dyn., 8, 93-135 (1977) · Zbl 0354.76064 · doi:10.1080/03091927708240373
[34] Gilman, P. A.; Miller, J., Nonlinear convection of a compressible fluid in a rotating spherical shell, Astrophys. J. Suppl., 61, 585-608 (1986) · doi:10.1086/191125
[35] Gizon, L.; Birch, A. C., Helioseismology challenges models of solar convection, Proc. Nat. Acad. Sci., 109, 11896-11897 (2012) · doi:10.1073/pnas.1208875109
[36] Guerrero, G.; Smolarkiewicz, P. K.; de Gouveia DalPino, E. M.; Kosovichev, A. G.; Mansour, N. N., On the role of tachoclines in solar and stellar dynamos, Astrophys. J., 819, 104 (2016) · doi:10.3847/0004-637X/819/2/104
[37] Hanasoge, S. M.; Duvall, T. L.; Sreenivasan, K. R., Anomalously weak solar convection, Proc. Natl. Acad. Sci., 109, 11928-11932 (2012) · doi:10.1073/pnas.1206570109
[38] Hotta, H., Solar overshoot region and small-scale dynamo with realistic energy flux, Astrophys. J., 843, 52 (2017) · doi:10.3847/1538-4357/aa784b
[39] Hotta, H.; Rempel, M.; Yokoyama, T., High-resolution calculation of the solar global convection with the reduced speed of sound technique. II. Near surface shear layer with the rotation, Astrophys. J., 798, 51 (2015) · doi:10.1088/0004-637X/798/1/51
[40] Hotta, H.; Rempel, M.; Yokoyama, T., Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations, Science, 351, 1427-1430 (2016) · Zbl 1355.76077 · doi:10.1126/science.aad1893
[41] Hurlburt, N. E.; Toomre, J.; Massaguer, J. M., Two-dimensional compressible convection extending over multiple scale heights, Astrophys. J., 282, 557-573 (1984) · doi:10.1086/162235
[42] Käpylä, M. J.; Käpylä, P. J.; Olspert, N.; Brandenburg, A.; Warnecke, J.; Karak, B. B.; Pelt, J., Multiple dynamo modes as a mechanism for long-term solar activity variations, Astron. Astrophys., 589, A56 (2016) · doi:10.1051/0004-6361/201527002
[43] Käpylä, P. J., Magnetic and rotational quenching of the Λ effect, Astron. Astrophys. (2019)
[44] Käpylä, P.J., Gent, F.A., Olspert, N., Käpylä, M.J. and Brandenburg, A.Sensitivity to luminosity, centrifugal force, and boundary conditions in spherical shell convection. doi:, 2019.
[45] Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A., Confirmation of bistable stellar differential rotation profiles, Astron. Astrophys., 570, A43 (2014) · doi:10.1051/0004-6361/201423412
[46] Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A., Small-scale dynamos in simulations of stratified turbulent convection, Astron. Nachr., 339, 127-133 (2018) · doi:10.1002/asna.201813477
[47] Käpylä, P. J.; Käpylä, M. J.; Olspert, N.; Warnecke, J.; Brandenburg, A., Convection-driven spherical shell dynamos at varying Prandtl numbers, Astron. Astrophys., 599, A4 (2017) · doi:10.1051/0004-6361/201628973
[48] Käpylä, P. J.; Korpi, M. J.; Brandenburg, A., Alpha effect and turbulent diffusion from convection, Astron. Astrophys., 500, 633-646 (2009) · Zbl 1177.85026 · doi:10.1051/0004-6361/200811498
[49] Käpylä, P. J.; Korpi, M. J.; Brandenburg, A.; Mitra, D.; Tavakol, R., Convective dynamos in spherical wedge geometry, Astron. Nachr., 331, 73 (2010) · Zbl 1217.85007 · doi:10.1002/asna.200911252
[50] Käpylä, P. J.; Korpi, M. J.; Ossendrijver, M.; Stix, M., Magnetoconvection and dynamo coefficients. III. α-effect and magnetic pumping in the rapid rotation regime, Astron. Astrophys., 455, 401-412 (2006) · doi:10.1051/0004-6361:20064972
[51] Käpylä, P. J.; Mantere, M. J.; Brandenburg, A., Effects of stratification in spherical shell convection, Astron. Nachr., 332, 883 (2011) · doi:10.1002/asna.201111619
[52] Käpylä, P. J.; Mantere, M. J.; Brandenburg, A., Cyclic magnetic activity due to turbulent convection in spherical wedge geometry, Astrophys. J. Lett., 755, L22 (2012) · doi:10.1088/2041-8205/755/1/L22
[53] Käpylä, P. J.; Mantere, M. J.; Cole, E.; Warnecke, J.; Brandenburg, A., Effects of enhanced stratification on equatorward dynamo wave propagation, Astrophys. J., 778, 41 (2013) · doi:10.1088/0004-637X/778/1/41
[54] Käpylä, P. J.; Mantere, M. J.; Guerrero, G.; Brandenburg, A.; Chatterjee, P., Reynolds stress and heat flux in spherical shell convection, Astron. Astrophys., 531, A162 (2011) · doi:10.1051/0004-6361/201015884
[55] Käpylä, P. J.; Rheinhardt, M.; Brandenburg, A.; Arlt, R.; Käpylä, M. J.; Lagg, A.; Olspert, N.; Warnecke, J., Extended subadiabatic layer in simulations of overshooting convection, Astrophys. J. Lett., 845, L23 (2017) · doi:10.3847/2041-8213/aa83ab
[56] Karak, B. B.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A.; Olspert, N.; Pelt, J., Magnetically controlled stellar differential rotation near the transition from solar to anti-solar profiles, Astron. Astrophys., 576, A26 (2015) · doi:10.1051/0004-6361/201424521
[57] Karak, B. B.; Miesch, M.; Bekki, Y., Consequences of high effective Prandtl number on solar differential rotation and convective velocity, Physics of Fluids, 30 (2018) · doi:10.1063/1.5022034
[58] Kitchatinov, L. L., Rotational shear near the solar surface as a probe for subphotospheric magnetic fields, Astron. Lett., 42, 339-345 (2016) · doi:10.1134/S1063773716050054
[59] Kitchatinov, L. L.; Rüdiger, G., Differential rotation in solar-type stars: Revisiting the Taylor-number puzzle, Astron. Astrophys., 299, 446 (1995)
[60] Korre, L.; Brummell, N.; Garaud, P., Weakly non-Boussinesq convection in a gaseous spherical shell, Phys. Rev. E, 96 (2017) · doi:10.1103/PhysRevE.96.033104
[61] Krause, F.; Rädler, K. H., Mean-field Magnetohydrodynamics and Dynamo Theory (1980), Oxford: Pergamon Press, Oxford · Zbl 0505.76120
[62] Matilsky, L.I., Hindman, B.W. and Toomre, J.. The role of downflows in establishing solar near-surface shear. arXiv:1810.00115, 2018.
[63] Miesch, M. S.; Brun, A. S.; Toomre, J., Solar differential rotation influenced by latitudinal entropy variations in the tachocline, Astrophys. J., 641, 618-625 (2006) · doi:10.1086/499621
[64] Miesch, M. S.; Toomre, J., Turbulence, magnetism, and shear in stellar interiors, Ann. Rev. Fluid Mech., 41, 317-345 (2009) · Zbl 1159.76053 · doi:10.1146/annurev.fluid.010908.165215
[65] Mitra, D.; Tavakol, R.; Brandenburg, A.; Moss, D., Turbulent dynamos in spherical shell segments of varying geometrical extent, Astrophys. J., 697, 923-933 (2009) · doi:10.1088/0004-637X/697/1/923
[66] Nelson, N. J.; Brown, B. P.; Brun, A. S.; Miesch, M. S.; Toomre, J., Buoyant magnetic loops in a global dynamo simulation of a young Sun, Astrophys. J. Lett., 739, L38 (2011) · doi:10.1088/2041-8205/739/2/L38
[67] Nelson, N. J.; Brown, B. P.; Brun, A. S.; Miesch, M. S.; Toomre, J., Magnetic wreaths and cycles in convective dynamos, Astrophys. J., 762, 73 (2013) · doi:10.1088/0004-637X/762/2/73
[68] Nelson, N. J.; Featherstone, N. A.; Miesch, M. S.; Toomre, J., Driving solar giant cells through the self-organization of near-surface plumes, Astrophys. J., 859, 117 (2018) · doi:10.3847/1538-4357/aabc07
[69] Nordlund, A.; Brandenburg, A.; Jennings, R. L.; Rieutord, M.; Ruokolainen, J.; Stein, R. F.; Tuominen, I., Dynamo action in stratified convection with overshoot, Astrophys. J., 392, 647-652 (1992) · doi:10.1086/171465
[70] O’Mara, B.; Miesch, M. S.; Featherstone, N. A.; Augustson, K. C., Velocity amplitudes in global convection simulations: The role of the Prandtl number and near-surface driving, Adv. Space Res., 58, 1475-1489 (2016) · doi:10.1016/j.asr.2016.03.038
[71] Ossendrijver, M.; Stix, M.; Brandenburg, A., Magnetoconvection and dynamo coefficients: Dependence of the alpha effect on rotation and magnetic field, Astron. Astrophys., 376, 713-726 (2001) · doi:10.1051/0004-6361:20011041
[72] Parker, E. N., Hydromagnetic dynamo models, Astrophys. J., 122, 293 (1955) · doi:10.1086/146087
[73] Parker, E. N., The dynamo dilemma, Solar Phys., 110, 11-21 (1987) · doi:10.1007/BF00148198
[74] Passos, D.; Charbonneau, P., Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection, Astron. Astrophys., 568, A113 (2014) · doi:10.1051/0004-6361/201423700
[75] Pidatella, R. M.; Stix, M., Convective overshoot at the base of the sun’s convection zone, Astron. Astrophys., 157, 338-340 (1986)
[76] Pouquet, A.; Frisch, U.; Léorat, J., Strong MHD helical turbulence and the nonlinear dynamo effect, J. Fluid Mech., 77, 321-354 (1976) · Zbl 0336.76019 · doi:10.1017/S0022112076002140
[77] Pulkkinen, P.; Tuominen, I.; Brandenburg, A.; Nordlund, A.; Stein, R. F., Rotational effects on convection simulated at different latitudes, Astron. Astrophys., 267, 265-274 (1993)
[78] Rempel, M., Solar differential rotation and meridional flow: The role of a subadiabatic tachocline for the Taylor-Proudman balance, Astrophys. J., 622, 1320-1332 (2005) · doi:10.1086/428282
[79] Robinson, F. J.; Chan, K. L., A large-eddy simulation of turbulent compressible convection: Differential rotation in the solar convection zone, Monthly Notices Roy. Astron. Soc., 321, 723-732 (2001) · doi:10.1046/j.1365-8711.2001.04036.x
[80] Rüdiger, G., Differential Rotation and Stellar Convection. Sun and Solar-type Stars (1989), Berlin: Akademie Verlag, Berlin
[81] Rüdiger, G.; Egorov, P.; Kitchatinov, L. L.; Küker, M., The eddy heat-flux in rotating turbulent convection, Astron. Astrophys., 431, 345-352 (2005) · Zbl 1066.85005 · doi:10.1051/0004-6361:20041670
[82] Rüdiger, G.; Küker, M.; Tereshin, I., The existence of the Λ effect in the solar convection zone as indicated by SDO/HMI data, Astron. Astrophys., 572, L7 (2014) · doi:10.1051/0004-6361/201424953
[83] Schmitt, J. H.M. M.; Rosner, R.; Bohn, H. U., The overshoot region at the bottom of the solar convection zone, Astrophys. J., 282, 316-329 (1984) · doi:10.1086/162205
[84] Schou, J.; Antia, H. M.; Basu, S.; Bogart, R. S.; Bush, R. I.; Chitre, S. M.; Christensen-Dalsgaard, J.; diMauro, M. P.; Dziembowski, W. A.; Eff-Darwich, A.; Gough, D. O.; Haber, D. A.; Hoeksema, J. T.; Howe, R.; Korzennik, S. G.; Kosovichev, A. G.; Larsen, R. M.; Pijpers, F. P.; Scherrer, P. H.; Sekii, T.; Tarbell, T. D.; Title, A. M.; Thompson, M. J.; Toomre, J., Helioseismic studies of differential rotation in the solar envelope by the solar oscillations investigation using the Michelson Doppler Imager, Astrophys. J., 505, 390-417 (1998) · doi:10.1086/306146
[85] Schrinner, M.; Rädler, K. H.; Schmitt, D.; Rheinhardt, M.; Christensen, U., Mean-field view on rotating magnetoconvection and a geodynamo model, Astron. Nachr., 326, 245-249 (2005) · doi:10.1002/asna.200410384
[86] Schrinner, M.; Rädler, K. H.; Schmitt, D.; Rheinhardt, M.; Christensen, U. R., Mean-field concept and direct numerical simulations of rotating magnetoconvection and the geodynamo, Geophys. Astrophys. Fluid Dyn., 101, 81-116 (2007) · Zbl 1505.76121 · doi:10.1080/03091920701345707
[87] Spada, F.; Demarque, P.; Kim, Y. C.; Boyajian, T. S.; Brewer, J. M., The Yale-Potsdam stellar isochrones, Astrophys. J., 838, 161 (2017) · doi:10.3847/1538-4357/aa661d
[88] Spruit, H., Convection in stellar envelopes: A changing paradigm, Mem. d. Soc. Astron. It., 68, 397 (1997)
[89] Steenbeck, M.; Krause, F.; Rädler, K. H., Berechnung der mittleren Lorentz-Feldstärke \(####\) f“ur ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kr”afte beeinflußter Bewegung, Zeitschrift Naturforschung Teil A, 21, 369 (1966)
[90] Strugarek, A.; Beaudoin, P.; Charbonneau, P.; Brun, A. S., On the sensitivity of magnetic cycles in global simulations of solar-like stars, Astrophys. J., 863, 35 (2018) · doi:10.3847/1538-4357/aacf9e
[91] Strugarek, A.; Beaudoin, P.; Charbonneau, P.; Brun, A. S.; do Nascimento, J. D., Reconciling solar and stellar magnetic cycles with nonlinear dynamo simulations, Science, 357, 185-187 (2017) · doi:10.1126/science.aal3999
[92] Tremblay, P. E.; Ludwig, H. G.; Freytag, B.; Fontaine, G.; Steffen, M.; Brassard, P., Calibration of the mixing-length theory for convective white dwarf envelopes, Astrophys. J., 799, 142 (2015) · doi:10.1088/0004-637X/799/2/142
[93] van Ballegooijen, A. A., The overshoot layer at the base of the solar convective zone and the problem of magnetic flux storage, Astron. Astrophys., 113, 99-112 (1982) · Zbl 0503.76126
[94] Vitense, E., Die Wasserstoffkonvektionszone der Sonne, Z. Astrophys., 32, 135 (1953)
[95] Viviani, M.; Warnecke, J.; Käpylä, M. J.; Käpylä, P. J.Olspert; Lehtinen, J. J.; Brandenburg, A., Transition from axi- to nonaxisymmetric dynamo modes in spherical convection models of solar-like stars, Astron. Astrophys., 616, A160 (2018) · doi:10.1051/0004-6361/201732191
[96] Warnecke, J., Dynamo cycles in global convection simulations of solar-like stars, Astron. Astrophys., 616, A72 (2018) · doi:10.1051/0004-6361/201732413
[97] Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A., On the cause of solar-like equatorward migration in global convective dynamo simulations, Astrophys. J. Lett., 796, L12 (2014) · doi:10.1088/2041-8205/796/1/L12
[98] Warnecke, J.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A., Influence of a coronal envelope as a free boundary to global convective dynamo simulations, Astron. Astrophys., 596, A115 (2016) · doi:10.1051/0004-6361/201526131
[99] Warnecke, J.; Rheinhardt, M.; Tuomisto, S.; Käpylä, P. J.; Käpylä, M. J.; Brandenburg, A., Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars, Astron. Astrophys., 609, A51 (2018) · doi:10.1051/0004-6361/201628136
[100] Weiss, A.; Hillebrandt, W.; Thomas, H. C.; Ritter, H., Cox and Giuli’s Principles of Stellar Structure (2004), Cambridge: Cambridge Scientific, Cambridge
[101] Yoshimura, H., On the dynamo action of the global convection in the solar convection zone, Astrophys. J., 178, 863-886 (1972) · doi:10.1086/151840
[102] Yoshimura, H., Solar-cycle dynamo wave propagation, Astrophys. J., 201, 740-748 (1975) · doi:10.1086/153940
[103] Zahn, J. P., Convective penetration in stellar interiors, Astron. Astrophys., 252, 179-188 (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.