×

Chaotic orbits of tumbling ellipsoids. (English) Zbl 1460.76833

Summary: Orbits tracked by ellipsoids immersed in inviscid and viscous environments are studied by means of Kirchhoff’s equations and high resolution numerical simulations using a variant of the immersed boundary method. We explore the consequences of Kozlov and Onishchenko’s theorem of non-integrability of Kirchhoff’s equations to show how the fraction of phase space in chaotic orbits is sensitively determined by the body shape, fluid/solid density ratio and the fraction of initial energy in rotational motion. We show how the added mass tensor of the system is an important player in both viscous and inviscid flow, in causing chaos in a triaxial ellipsoid while acting to suppress it in a spheroid. We identify a new integral of motion for a spheroid in inviscid fluid: one component of the generalised angular momentum. A spheroid, which can never execute chaotic dynamics in inviscid flow, is shown to display chaos in viscous flow due to irregular vortex shedding. But the dynamics of the spheroid is restricted whether in viscous or in inviscid flow, unlike in the triaxial ellipsoid, due to our extra integral of motion.

MSC:

76T20 Suspensions
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Aref, H. & Jones, S. W.1993Chaotic motion of a solid through ideal fluid. Phys. Fluids A5 (12), 3026-3028. · Zbl 0815.76012
[2] Auguste, F., Magnaudet, J. & Fabre, D.2013Falling styles of disks. J. Fluid Mech.719, 388-405. · Zbl 1284.76130
[3] Cencini, M., Cecconi, F. & Vulpiani, A.2010Chaos: From Simple Models to Complex Systems, 1st edn.World Scientific. · Zbl 1209.37001
[4] Chorin, J. A.1967A numerical method for solving incompressible viscous flow problems. J. Comput. Phys.2 (1), 12-16. · Zbl 0149.44802
[5] Clift, R., Grace, J. R. & Weber, M. E.1978Bubbles, Drops, and Particles, 1st edn.Academic Press.
[6] Crapper, M., Duursma, G., Robertson, C. & Wong, S.2007 EDEM-FLUENT investigation of bubble-tube interactions in gas-fluidized beds. In Proceedings of the 6th International Conference in Multiphase Flows (ed. Sommerfeld, M.).
[7] Dezeeuw, D. & Powell, K. G.1993An adaptively refined Cartesian mesh solver for the Euler equations. J. Comput. Phys.104 (1), 56-68. · Zbl 0766.76066
[8] Dragović, V. & Gajić, B.2012On the cases of Kirchhoff and Chaplygin of the Kirchhoff equations. Regular Chaotic Dyn.17 (5), 431-438. · Zbl 1252.70022
[9] Drake, T. G. & Calantoni, J.2001Discrete particle model for sheet flow sediment transport in the nearshore. J. Geophys. Res.106 (C9), 19859-19868.
[10] Dysthe, D. K., Renard, F., Porcheron, F. & Rousseau, B.2002Fluid in mineral interfaces—molecular simulations of structure and diffusion. Geophys. Res. Lett.29 (7), 13-1-13-4.
[11] Eckmann, J. P., Oliffson Kamphorst, S. & Ruelle, D.1987Recurrence plots of dynamical systems. Europhys. Lett.4 (91), 973-977.
[12] Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B.2015Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids27 (6), 063301.
[13] Holmes, P., Jenkins, J. & Leonard, N. E.1998Dynamics of the Kirchhoff equations I: coincident centers of gravity and buoyancy. Physica D118 (3-4), 311-342. · Zbl 1194.70009
[14] Ingram, D. M., Causon, D. M. & Mingham, C. G.2003Developments in Cartesian cut cell methods. Maths Comput. Simul.61 (3-6), 561-572. · Zbl 1205.76167
[15] Jeffery, G. B.1922The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A102 (715), 161-179. · JFM 49.0748.02
[16] Kirchhoff, G.1876Vorlesungen über mathematische Physik. B.G. Teubner. · JFM 08.0542.01
[17] Korotkin, A. I.2009Added Masses of Ship Structures, 1st edn, vol. 88. Springer.
[18] Kozlov, V. V. & Onishchenko, D. A.1982Nonintegrability of Kirchhoff’s equations. Sov. Maths Dokl.26 (2), 495-498. · Zbl 0541.70009
[19] Kuipers, J. B.1999Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace, and Virtual Reality. Princeton University. · Zbl 1053.70001
[20] Lamb, H.1945Hydrodynamics. Dover Publications.
[21] Landau, L. D. & Lifshitz, E. M.1969Mechanics, 2nd edn. Pergamon.
[22] Limacher, E., Morton, C. & Wood, D.2018Generalized derivation of the added-mass and circulatory forces for viscous flows. Phys. Rev. Fluids3 (1), 014701.
[23] Marwan, N.2008A historical review of recurrence plots. Eur. Phys. J. Spec. Top.164 (1), 3-12.
[24] Marwan, N., Carmen Romano, M., Thiel, M. & Kurths, J.2007Recurrence plots for the analysis of complex systems. Phys. Rep.438 (5-6), 237-329.
[25] Masella, J. M., Tran, Q. H., Ferre, D. & Pauchon, C.1998Transient simulation of two-phase flows in pipes. Intl J. Multiphase Flow24 (5), 739-755. · Zbl 1121.76459
[26] Milne-Thomson, L. M.1968Theoretical Hydrodynamics, 5th edn. Macmillan. · Zbl 0164.55802
[27] Mordant, N. & Pinton, J. F.2000Velocity measurement of a settling sphere. Eur. Phys. J. B18 (2), 343-352.
[28] Nanayama, F., Satake, K., Furukawa, R., Shimokawa, K., Atwater, B. F., Shigeno, K. & Yamaki, S.2003Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature424 (6949), 660-663.
[29] Popinet, S.2003Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J. Comput. Phys.190 (2), 572-600. · Zbl 1076.76002
[30] Rosén, T.2017Chaotic rotation of a spheroidal particle in simple shear flow. Chaos27 (6), 63112.
[31] Samet, H.1990Applications of Spatial Data Structures: Computer Graphics, Image Processing, and GIS. Addison-Wesley.
[32] Shui, P., Valluri, P., Popinet, S. & Govindarajan, R.2015 Direct numerical simulation study of hydrodynamic interactions between immersed solids and wall during flow. In Procedia IUTAM (ed. K. C. Sahu), vol. 15, pp. 150-157. Elsevier.
[33] Smith, R.2005 Open Dynamics Engine. Available at: https://www.ode.org/.
[34] Taylor, G. I.1923Experiments on the motion of solid bodies in rotating fluids. Proc. R. Soc. Lond. A104 (725), 213-218.
[35] Udaykumar, H. S., Shyy, W. & Rao, M. M.1996ELAFINT: a mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries. Intl J. Numer. Methods Fluids22 (8), 691-712. · Zbl 0887.76059
[36] Wachs, A.2019Particle-scale computational approaches to model dry and saturated granular flows of non-Brownian, non-cohesive, and non-spherical rigid bodies. Acta Mech.230 (6), 1919-1980. · Zbl 1428.76176
[37] Yarin, A. L., Gottlieb, O. & Roisman, I. V.1997Chaotic rotation of triaxial ellipsoids in simple shear flow. J. Fluid Mech.340, 83-100. · Zbl 0888.76021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.