zbMATH — the first resource for mathematics

Łojasiewicz inequality at singular points. (English) Zbl 1411.32010
Let \(X\subset \mathbb{R}^{n}\) be a globally subanalytic bounded \(C^{1}\) submanifold and \(f:X\rightarrow \mathbb{R}\) a globally subanalytic \(C^{1}\) function. The set of generalized critical values \(K_{f}\) of \(f\) is defined by \[ K_{f}:=\big\{y\in \mathbb{R}:\exists (x_{k})_{k\in \mathbb{N}}\text{ in }X,\text{ }f(x_{k})\rightarrow y\text{ and }\left| \nabla f(x_{k})\right| \rightarrow 0\big\}. \] The set \(K_{f}\) is finite and contains the usual critical values of \(f\) and asymptotic critical values of \(f\). The main theorem is a variant of the Łojasiewicz inequality: If \(K_{f}\neq \emptyset \) then there exist a rational number \(\theta \in (0,1)\) and \(C>0\) such that for all \(x\in X\) the following inequality holds \[ d(f(x),K_{f})^{\theta }\leq C\left| \nabla f(x)\right| . \]
32B20 Semi-analytic sets, subanalytic sets, and generalizations
58K05 Critical points of functions and mappings on manifolds
14P15 Real-analytic and semi-analytic sets
Full Text: DOI
[1] Bolte, J\'er\^ome; Daniilidis, Aris; Lewis, Adrian, The \L ojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems, SIAM J. Optim., 17, 4, 1205-1223, (2006) · Zbl 1129.26012
[2] Denef, J.; van den Dries, L., \(p\)-adic and real subanalytic sets, Ann. of Math. (2), 128, 1, 79-138, (1988) · Zbl 0693.14012
[3] van den Dries, Lou, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series 248, x+180 pp., (1998), Cambridge University Press, Cambridge · Zbl 0953.03045
[4] Kurdyka, Krzysztof, On gradients of functions definable in o-minimal structures, Ann. Inst. Fourier (Grenoble), 48, 3, 769-783, (1998) · Zbl 0934.32009
[5] [L]l S. \L ojasiewicz, \emph Ensembles semi-analytiques, Inst. Hautes Etudes Sci., Bures-sur-Yvette, (1965) available online at \urlhttps://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
[6] Rockafellar, R. Tyrrell; Wets, Roger J.-B., Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 317, xiv+733 pp., (1998), Springer-Verlag, Berlin · Zbl 0888.49001
[7] Valette, Anna; Valette, Guillaume, A generalized Sard theorem on real closed fields, Math. Nachr., 289, 5-6, 748-755, (2016) · Zbl 1343.58019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.