×

zbMATH — the first resource for mathematics

On the geometry of polynomial mappings at infinity. (Sur la géométrie à l’infini des applications polynomiales.) (English. French summary) Zbl 1396.14050
Summary: We associate to a given polynomial map from \(\mathbb{C}^2\) to itself with nonvanishing Jacobian a variety whose homology or intersection homology describes the geometry of singularities at infinity of this map.

MSC:
14P10 Semialgebraic sets and related spaces
14R15 Jacobian problem
32S20 Global theory of complex singularities; cohomological properties
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bochnak, J.; M., Coste; Roy, M.-F., Géométrie algébrique réelle, (1987), Springer · Zbl 0633.14016
[2] Goresky, M.; MacPherson, R., Intersection homology theory, Topology, 19, 2, 135-162, (1980) · Zbl 0448.55004
[3] Goresky, M.; MacPherson, R., Intersection homology. II, Invent. Math., 72, 77-129, (1983) · Zbl 0529.55007
[4] Hardt, R., Semi-algebraic local-triviality in semi-algebraic mappings, Amer. J. Math., 102, 2, 291-302, (1980) · Zbl 0465.14012
[5] Jelonek, Z., The set of point at which polynomial map is not proper, Ann. Polon. Math., 58, 3, 259-266, (1993) · Zbl 0806.14009
[6] Jelonek, Z., Testing sets for properness of polynomial mappings, Math. Ann., 315, 1, 1-35, (1999) · Zbl 0946.14039
[7] Jelonek, Z., Geometry of real polynomial mappings, Math. Z., 239, 2, 321-333, (2002) · Zbl 0997.14017
[8] Keller, O. H., Ganze cremonatransformationen monatschr, Math. Phys., 47, 229-306, (1939) · Zbl 0021.15303
[9] Kirwan, F.; Woolf, J., An Introduction to Intersection Homology Theory, (2006), Chapman & Hall/CRC · Zbl 1106.55001
[10] Mostowski, T., Some properties of the ring of Nash functions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 3, 2, 245-266, (1976) · Zbl 0335.14001
[11] Valette, G.\(, L^∞\) homology is an intersection homology, Adv. in Math., 231, 3-4, 1818-1842, (2012) · Zbl 1258.14024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.