×

zbMATH — the first resource for mathematics

\(\mathcal{C}^{p}\)-parametrization in o-minimal structures. (English) Zbl 07036967
Summary: We give a geometric and elementary proof of the uniform \(\mathcal{C}^{p}\)-parametrization theorem of Yomdin and Gromov in arbitrary o-minimal structures.
MSC:
03C64 Model theory of ordered structures; o-minimality
14P15 Real-analytic and semi-analytic sets
32B20 Semi-analytic sets, subanalytic sets, and generalizations
PDF BibTeX Cite
Full Text: DOI
References:
[1] Burguet, D., A proof of Yomdin-Gromov’s algebraic lemma, Israel J. Math., 168, 291-316, (2008) · Zbl 1169.14038
[2] Cluckers, R.; Comte, G.; Loeser, F.
[3] Cluckers, R.; Pila, J.; Wilkie, A.
[4] Coste, M., An introduction to O-minimal geometry, (2000), Edizioni ETS: Edizioni ETS, Pisa
[5] Gromov, M., Entropy, homology and semialgebraic geometry, Astérisque, 145-146, 5, 225-240, (1987) · Zbl 0611.58041
[6] Hironaka, H., Introduction to real analytic sets and real analytic maps, (2009), Edizioni ETS: Edizioni ETS, Pisa
[7] Kocel-Cynk, B.; Pawłucki, W.; Valette, A., Short geometric proof that Hausdorff limits are definable in any o-minimal structure, Adv. Geom., 14, no. 1, 49-58, (2014) · Zbl 1309.14046
[8] Kurdyka, K.; Pawłucki, W., Subanalytic version of Whitney’s extension theorem, Studia Math., 124, no. 3, 269-280, (1997) · Zbl 0955.32006
[9] Łojasiewicz, S., Ensembles semi-analytiques, (1965), Institut des Hautes Études Scientifiques: Institut des Hautes Études Scientifiques, Bures-sur-Yvette
[10] Pawłucki, W., Le théorème de Puiseux pour une application sous-analytique, Bull. Polish Acad. Sci. Math., 32, no. 9-10, 555-560, (1984) · Zbl 0574.32010
[11] Pawłucki, W., Lipschitz cell decomposition in o-minimal structures. I, Illinois J. Math., 52, 1045-1063, (2008) · Zbl 1222.32019
[12] Pila, J.; Wilkie, A. J., The rational points of a definable set, Duke Math. J., 133, no. 3, 591-616, (2006) · Zbl 1217.11066
[13] Valette, G., Lipschitz triangulations, Illinois J. Math., 49, no. 3, 953-979, (2005) · Zbl 1154.14323
[14] Van Den Dries, L., Tame topology and o-minimal structures, (1998), Cambridge University Press: Cambridge University Press, Cambridge · Zbl 0953.03045
[15] Yomdin, Y., Volume growth and entropy, Israel J. Math., 57, 285-300, (1987) · Zbl 0641.54036
[16] Yomdin, Y., Ck-resolution of semialgebraic mappings. Addendum to: “Volume growth and entropy”, Israel J. Math., 57, 301-317, (1987) · Zbl 0641.54037
[17] Yomdin, Y., Analytic reparametrization of semialgebraic sets, J. Complexity, 24, no. 1, 54-76, (2008) · Zbl 1143.32007
[18] Yomdin, Y., Smooth parametrizations in dynamics, analysis, diophantine and computational geometry, Jpn. J. Ind. Appl. Math., 32, no. 2, 411-435, (2015) · Zbl 1358.37045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.