×

Perturbative Hamiltonian constraints for higher-order theories. (English) Zbl 1247.81429

Summary: We present an alternative method for constructing a consistent perturbative low energy canonical formalism for higher-order time-derivative theories, which consists in applying the standard Dirac method to the first-order version of the higher-order Lagrangian, augmented by additional perturbative Hamiltonian constraints. The method is purely algebraic, provides the dynamical formulation directly in phase space and can be used in singular theories without the need of initially fixing the gauge. We apply it to two paradigmatic examples: the Pais-Uhlenbeck oscillator and the Bernard-Duncan scalar field with self-interaction. We also compare the results, both at the classical and quantum level, with the ones corresponding to a direct perturbative construction applied to the exact higher-order theory, after incorporating the projection to the space of physical modes. This comparison highlights the soundness of the present formalism.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
70H05 Hamilton’s equations
81Q15 Perturbation theories for operators and differential equations in quantum theory
81T15 Perturbative methods of renormalization applied to problems in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1016/0550-3213(87)90681-X
[2] DOI: 10.1016/0550-3213(90)90047-H
[3] DOI: 10.1103/PhysRevD.16.953
[4] DOI: 10.1007/BF02748637
[5] Connes A., J. High Energy Phys. 9802 pp 003–
[6] Seiberg N., J. High Energy Phys. 9909 pp 032–
[7] Seiberg N., J. High Energy Phys. 0006 pp 044–
[8] DOI: 10.1016/0550-3213(89)90461-6
[9] Woodard R. P., Lect. Notes Phys. pp 403– (2007)
[10] DOI: 10.1016/0370-2693(89)90075-0
[11] DOI: 10.1016/0550-3213(90)90078-R
[12] Kristensen P., Vidensk. Selsk. Mat-Fys. Medd. 27 pp 7–
[13] Ostrogradsky M., Mem. Acad. St. Petersbourg, pp 385–
[14] DOI: 10.1007/BF00401583 · Zbl 0688.70010
[15] DOI: 10.1088/0305-4470/22/10/021 · Zbl 0695.58014
[16] DOI: 10.1016/S0550-3213(02)00020-2 · Zbl 0985.81125
[17] DOI: 10.1103/PhysRevD.34.2302
[18] DOI: 10.1103/PhysRevLett.90.211601 · Zbl 1267.81298
[19] DOI: 10.1103/PhysRevD.55.6760
[20] DOI: 10.1103/PhysRevD.58.116002
[21] DOI: 10.1103/PhysRevD.69.105009
[22] DOI: 10.1103/PhysRevD.80.015020
[23] DOI: 10.1142/S0217751X98000469
[24] DOI: 10.1103/PhysRevD.11.848
[25] DOI: 10.1103/PhysRev.79.145 · Zbl 0040.13203
[26] DOI: 10.1103/PhysRevD.77.123541
[27] DOI: 10.1016/0550-3213(91)90244-R
[28] Grosse-Knetter C., Phys. Rev. 49 pp 6709–
[29] DOI: 10.1103/PhysRevD.16.413
[30] DOI: 10.1016/0375-9601(84)90947-2
[31] DOI: 10.1016/0375-9601(80)90076-6
[32] DOI: 10.1063/1.527274 · Zbl 0613.70012
[33] Dirac P. A. M., Lectures on Quantum Mechanics (1964) · Zbl 0141.44603
[34] Sudarshan E. C. G., Classical Dynamics: A Modern Perspective (1974) · Zbl 0329.70001
[35] Sundermeyer K., Constrained Dynamics (1982)
[36] DOI: 10.1103/PhysRevD.41.3720
[37] DOI: 10.1103/PhysRev.70.759
[38] DOI: 10.1103/PhysRev.76.684.2 · Zbl 0034.28104
[39] Lanczos C., The Variational Principles of Mechanics (1986) · Zbl 1198.70001
[40] DOI: 10.1103/PhysRevD.58.125018
[41] Déctor A., SIGMA 5 pp 053–
[42] Hoggat M. E., Fibonacci Quart. 11 pp 457–
[43] Dilcher K., Fibonacci Quart. 25 pp 300–
[44] Yi Y., Fibonacci Quart. 40 pp 314–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.