×

Retrieval of thermal properties in a transient conduction-radiation problem with variable thermal conductivity. (English) Zbl 1167.80398

Summary: This article reports an inverse analysis of a transient conduction-radiation problem with variable thermal conductivity. Simultaneous retrieval of parameters is accomplished by minimizing the objective function represented by the square of the difference between the measured and the assumed temperature fields. The measured temperature field is calculated from the direct method involving the lattice Boltzmann method (LBM) and the finite volume method (FVM). In the direct method, the FVM is used to obtain the radiative information and the LBM is used to solve the energy equation. With perturbations imposed on the measured temperature data, minimization of the objective function is achieved with the help of the genetic algorithm (GA). The accuracies of the retrieved parameters have been studied for the effects of the genetic parameters such as the crossover and the mutation rates, the population size, the number of generations and the effect of noise on the measured temperature data. A good estimation of parameters has been obtained.

MSC:

80A23 Inverse problems in thermodynamics and heat transfer
80M50 Optimization problems in thermodynamics and heat transfer
68T05 Learning and adaptive systems in artificial intelligence
76M28 Particle methods and lattice-gas methods
78M25 Numerical methods in optics (MSC2010)
78A40 Waves and radiation in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chen, H. T.; Chang, S. M.: Application of the hybrid method to inverse heat conduction problems, Int. J. Heat mass transfer 33, 621-628 (1990)
[2] Wang, Z.; Cai, R.; Chen, H.; Jia, X.: A three-dimensional inverse method using Navier – Stokes equations for turbomachinery blading, Inv. prob. Sci. eng. 8, 529-551 (2000)
[3] Liu, L. H.; Jiang, J.: Inverse radiation problem for reconstruction of temperature profile in axisymmetric free flames, J. quant. Spectrosc. radiat. Transfer 70, 207-215 (2001)
[4] Erturk, H.; Ezekoye, O. A.; Howell, J. R.: The application of an inverse formulation in the design of boundary conditions for transient radiative enclosure, J. heat transfer 124, 1095-1102 (2002)
[5] Behbahani-Nia, A.; Kowsary, F.: A dual reciprocity BE-based sequential function specification solution method for inverse heat conduction problems, Int. J. Heat mass transfer 47, 1247-1255 (2004) · Zbl 1053.80012 · doi:10.1016/j.ijheatmasstransfer.2003.09.023
[6] Wang, J.; Zabaras, N.: Using Bayesian statistics in the estimation of heat source in radiation, Int. J. Heat mass transfer 48, 15-29 (2005) · Zbl 1122.80307 · doi:10.1016/j.ijheatmasstransfer.2004.08.009
[7] Huang, C. H.; Wu, H. H.: An iterative regularization method in estimating the base temperature for non-Fourier fins, Int. J. Heat mass transfer 49, 4893-4902 (2006) · Zbl 1121.80311 · doi:10.1016/j.ijheatmasstransfer.2006.05.033
[8] Woodfield, P. L.; Monde, M.; Mitsutake, Y.: On estimating thermal diffusivity using analytical inverse solution for unsteady one-dimensional heat conduction, Int. J. Heat mass transfer 50, 1202-1205 (2007) · Zbl 1124.80403 · doi:10.1016/j.ijheatmasstransfer.2006.08.031
[9] Kolehmainen, V.; Kaipio, J. P.; Orlande, H. R. B.: Reconstruction of thermal conductivity and heat capacity using a tomographic approach, Int. J. Heat mass transfer 50, 5150-5160 (2007) · Zbl 1140.80395 · doi:10.1016/j.ijheatmasstransfer.2007.07.015
[10] Lin, D. T. W.; Yang, C.: The estimation of the strength of the heat source in the heat conduction problems, Appl. math. Model. 31, 2696-2710 (2007) · Zbl 1141.80010 · doi:10.1016/j.apm.2006.10.022
[11] Chiang, J. Y.; Chen, C. K.: Application of grey prediction to inverse nonlinear heat conduction problem, Int. J. Heat mass transfer 51, 576-585 (2008) · Zbl 1142.80003 · doi:10.1016/j.ijheatmasstransfer.2007.05.015
[12] Liu, F. B.: A modified genetic algorithm for solving the inverse heat transfer problem of estimating plan heat source, Int. J. Heat mass transfer 51, 3745-3752 (2008) · Zbl 1148.80371 · doi:10.1016/j.ijheatmasstransfer.2008.01.002
[13] Sarvari, S. M. H.; Howell, J. R.; Mansouri, S. H.: Inverse boundary design conduction – radiation problem in irregular two-dimensional domains, Numer. heat transfer B 44, 209-224 (2003)
[14] Asllanaj, F.; Milandri, A.; Jeandel, G.; Roche, J. R.: A finite difference solution of non-linear systems of radiative – conductive heat transfer equations, Int. J. Numer. methods eng. 54, 1649-1668 (2002) · Zbl 1013.80009 · doi:10.1002/nme.490
[15] Patankar, S. V.: Numerical heat transfer and fluid flow, (1980) · Zbl 0521.76003
[16] Mishra, S. C.; Roy, H. K.: Solving transient conduction – radiation problems using the lattice Boltzmann method and the finite volume method, J. comput. Phys. 223, 89-107 (2007) · Zbl 1163.80304 · doi:10.1016/j.jcp.2006.08.021
[17] Modest, M. F.: Radiative heat transfer, (2003)
[18] Chai, J. C.; Lee, H. S.; Patankar, S. V.: Finite volume method for radiation heat transfer, J. thermophys. Heat transfer 8, 419-425 (1994)
[19] Chu, H. S.; Tseng, C. J.: Conduction – radiation interaction in absorbing, emitting and scattering media with variable thermal conductivity, J. thermophys. Heat transfer 6, 537-540 (1992)
[20] Talukdar, P.; Mishra, S. C.: Transient conduction and radiation heat transfer with variable thermal conductivity, Numer. heat transfer A 41, 851-867 (2002)
[21] Wolf-Gladrow, D. A.: Lattice-gas cellular automata and lattice Boltzmann models: an introduction, (2000) · Zbl 0999.82054
[22] Succi, S.: The lattice Boltzmann method for fluid dynamics and beyond, (2001) · Zbl 0990.76001
[23] Holland, J. H.: Adaptation in natural and artificial systems, (1975) · Zbl 0317.68006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.