×

zbMATH — the first resource for mathematics

Quasi-coherent states for the Hermite oscillator. (English) Zbl 1391.81096
Summary: In this study, we obtained the quasi-coherent states of the damped harmonic oscillator which satisfy the Hermite differential equation classically. For the general damped oscillator, the Gaussian wave packets were derived in configuration and momentum spaces with minimum uncertainities at \(t = 0\), and the quasi-stationary states also obtained and showed that the expansion coefficients give a time-dependent Poisson distribution. As a special case, we found the displaced Gaussian wave packets for the Hermite oscillator and also discussed the weak coupling limit of the wave packets.
©2018 American Institute of Physics

MSC:
81R30 Coherent states
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schrödinger, E., Naturwissenschaften, 14, 664, (1926) · JFM 52.0967.01
[2] Glauber, R. J., Phys. Rev., 130, 2529, (1963)
[3] Sudarshan, E. C. G., Phys. Rev. Lett., 10, 227, (1963) · Zbl 0113.21305
[4] Klauder, J. R., J. Math. Phys., 4, 1055, (1963) · Zbl 0127.18701
[5] Nieto, M. M.; Simmons, L. M. Jr., Phys. Rev. D, 20, 1321, (1979)
[6] Radcliffe, J. M., J. Phys. A: Gen. Phys., 4, 313, (1971)
[7] Barut, A. O.; Girardello, L., Commun. Math. Phys., 21, 41, (1971) · Zbl 0214.38203
[8] Perelomov, A. M., Commun. Math. Phys., 26, 222, (1972) · Zbl 0243.22016
[9] Unal, N., Phys. Rev. A, 63, 052105, (2001)
[10] Unal, N., Can. J. Phys., 80, 875, (2002)
[11] Unal, N., J. Math. Phys., 48, 122107, (2007) · Zbl 1153.81444
[12] Unal, N., Cent. Eur. J. Phys., 7, 774, (2009)
[13] Unal, N., J. Math. Phys., 47, 122105, (2006) · Zbl 1112.81057
[14] Kandirmaz, N.; Unal, N., Theor. Math. Phys., 155, 884, (2008) · Zbl 1145.81380
[15] Colegrave, R. K.; Abdalla, M. S., Opt. Acta: Int. J. Opt., 28, 495, (1981)
[16] Pedrosa, I. A.; Rosas, A.; Guedes, I., J. Phys. A: Math. Gen., 38, 7757, (2005) · Zbl 1083.81516
[17] Dattoli, G.; Torre, A.; Gallardo, J. C., Riv. Nuovo Cimento Ser. 3, 11, 1, (1998)
[18] Nassar, A. B., Phys. Lett. A, 106, 43, (1984)
[19] Malkin, A.; Manko, V. I.; Trifonov, D. A., Phys. Lett. A, 30, 414, (1969)
[20] Sakharov, A., Zh. Eksp. Teor. Fiz., 49, 345, (1965); Sakharov, A., Zh. Eksp. Teor. Fiz., 49, 345, (1965);
[21] Schleich, W. P.; Walther, H., Elements of Quantum Information, (2007), Wiley-Verlag: Wiley-Verlag, Weinheim · Zbl 1146.81005
[22] Sarandy, M. S.; Duzzioni, E. I.; Serra, R. M., Phys. Lett. A, 375, 3343, (2011) · Zbl 1252.81043
[23] Lewis, H. R.; Riesenfeld, W. B., J. Math. Phys., 10, 1458, (1969)
[24] Unal, N., J. Math. Phys., 53, 012102, (2012) · Zbl 1273.81086
[25] Unal, N., Ann. Phys., 327, 2177, (2012) · Zbl 1256.81063
[26] Dernek, M.; Unal, N., J. Math. Phys., 54, 092102, (2013) · Zbl 1284.81162
[27] Castanos, O.; Schuch, D.; Rosas-Ortiz, O., J. Phys. A: Math. Theor., 46, 075304, (2013) · Zbl 1264.81252
[28] Guerrero, J.; Lopez-Ruiz, F. F., Phys. Scr., 90, 074046, (2015)
[29] Caldirola, P., Nuovo Cimento, 18, 393, (1941), 10.1007/bf02960144; Caldirola, P., Nuovo Cimento, 18, 393, (1941), 10.1143/ptp.3.440;
[30] Buyukasik, S. A.; Cayic, Z., J. Math. Phys., 57, 122107, (2016) · Zbl 1353.81048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.