Dubcová, M.; Klíč, A.; Pokorný, P.; Turzík, D. Stability of spatially periodic solutions in coupled map lattices. (English) Zbl 1067.82042 Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 2, 343-356 (2003). Cited in 2 Documents MSC: 82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics 37C75 Stability theory for smooth dynamical systems 37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems Keywords:Lattice dynamical systems; spectrum of linear operator; spatial chaos PDF BibTeX XML Cite \textit{M. Dubcová} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 2, 343--356 (2003; Zbl 1067.82042) Full Text: DOI References: [1] DOI: 10.1016/0167-2789(94)00182-P · Zbl 0888.58015 · doi:10.1016/0167-2789(94)00182-P [2] DOI: 10.1007/BF03167235 · Zbl 0847.46040 · doi:10.1007/BF03167235 [3] Afraimovich V. S., Rand. Comput. Dyn. 2 pp 287– [4] DOI: 10.1142/S0218127494000459 · Zbl 0870.58049 · doi:10.1142/S0218127494000459 [5] V. M. Aleksejev and M. V. Jakobson, Methods of Symbolic Dynamics, ed. R. Bowen (Mir, Moskva, 1979) pp. 196–240. [6] DOI: 10.1006/jdeq.1995.1163 · Zbl 0845.58041 · doi:10.1006/jdeq.1995.1163 [7] Dunford N., Linear Operators, Part I: General Theory (1958) · Zbl 0088.32102 [8] DOI: 10.1007/BFb0089647 · doi:10.1007/BFb0089647 [9] Kaneko K., Theory and Applications of Coupled Map Lattices, Chaos 2 (1992) · Zbl 1055.37540 [10] DOI: 10.1017/CBO9780511809187 · doi:10.1017/CBO9780511809187 [11] Schwartz L., Méthodes Mathématiques pur les Sciences Physiques. (1961) [12] Taylor A. E., Introduction to Functional Analysis (1967) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.