Dubcová, Miroslava; Turzík, Daniel; Klíč, Alois Stability of steady-state solutions in multidimensional coupled map lattices. (English) Zbl 1129.37346 Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, No. 8, 2689-2699 (2004). MSC: 37L60 Lattice dynamics and infinite-dimensional dissipative dynamical systems 37L15 Stability problems for infinite-dimensional dissipative dynamical systems 82C20 Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs in time-dependent statistical mechanics 37C99 Smooth dynamical systems: general theory Keywords:Lattice dynamical systems; spatially homogeneous solution; spatially periodic solution; spectrum of linear operator; Gelfand transformation PDF BibTeX XML Cite \textit{M. Dubcová} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 14, No. 8, 2689--2699 (2004; Zbl 1129.37346) Full Text: DOI References: [1] Afraimovich V. S., Rand. Comput. Dyn. 1 pp 423– [2] Afraimovich V. S., Rand. Comput. Dyn. 2 pp 287– [3] Afraimovich V. S., Physica 80 pp 277– [4] DOI: 10.1007/978-1-4612-3048-9 · doi:10.1007/978-1-4612-3048-9 [5] DOI: 10.1088/0951-7715/1/4/001 · Zbl 0679.58028 · doi:10.1088/0951-7715/1/4/001 [6] DOI: 10.1006/jdeq.1995.1163 · Zbl 0845.58041 · doi:10.1006/jdeq.1995.1163 [7] DOI: 10.1142/S0218127403006571 · Zbl 1067.82042 · doi:10.1142/S0218127403006571 [8] Harte R., Proc. Roy. Irish Acad. 88 pp 103– [9] Kaneko K., Theory and Applications of Coupled Map Lattices (1993) · Zbl 0777.00014 [10] DOI: 10.1080/1468936021000041672 · Zbl 1036.37028 · doi:10.1080/1468936021000041672 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.