×

A study of mechanical optimization strategy for cardiac resynchronization therapy based on an electromechanical model. (English) Zbl 1261.92020

Summary: An optimal electrode position and interventricular (VV) delay in cardiac resynchronization therapy (CRT) improves its success. However, the precise quantification of cardiac dyssynchrony and magnitude of resynchronization achieved by biventricular (BiV) pacing therapy with mechanical optimization strategies based on computational models remain scant. The maximum circumferential uniformity ratio estimate (CURE) was used here as mechanical optimization index, which was automatically computed for 6 different electrode positions based on a three-dimensional electromechanical canine model of heart failure (HF) caused by complete left bundle branch block (CLBBB). VV delay timing was adjusted accordingly. The heart excitation propagation was simulated with a monodomain model. The quantification of mechanical intra- and interventricular asynchrony was then investigated with the eight-node isoparametric element method. The results showed that (i) the optimal pacing location from maximal CURE of 0.8516 was found at the left ventricle (LV) lateral wall near the equator site with a VV delay of 60 ms, in accordance with current clinical studies, (ii) compared with electrical optimization strategy of \(E_{\text{RMS}}\), the LV synchronous contraction and the hemodynamics improved more with mechanical optimization strategy. Therefore, measures of mechanical dyssynchrony improve the sensitivity and specificity of predicting responders more. The model was subject to validation in future clinical studies.

MSC:

92C50 Medical applications (general)
92C05 Biophysics
92C35 Physiological flow
65K10 Numerical optimization and variational techniques
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. Garrigue, P. Bordachar, S. Reuter, P. Jaïs, M. Haïssaguerre, and J. Clementy, “Comparison of permanent left ventricular and biventricular pacing in patients with heart failure and chronic atrial fibrillation: a prospective hemodynamic study,” Cardiac Electrophysiology Review, vol. 7, no. 4, pp. 315-324, 2003.
[2] F. A. McAlister, J. A. Ezekowitz, N. Wiebe et al., “Systematic review: cardiac resynchronization in patients with symptomatic heart failure,” Annals of Internal Medicine, vol. 141, no. 5, pp. 381-390, 2004.
[3] J. Kron, J. M. Aranda Jr., W. M. Miles et al., “Benefit of cardiac resynchronization in elderly patients: results from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE) and Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE-ICD) trials,” Journal of Interventional Cardiac Electrophysiology, vol. 25, no. 2, pp. 91-96, 2009. · doi:10.1007/s10840-008-9330-2
[4] M. G. St John Sutton, T. Plappert, K. E. Hilpisch, W. T. Abraham, D. L. Hayes, and E. Chinchoy, “Sustained reverse left ventricular structural remodeling with cardiac resynchronization at one year is a function of etiology: quantitative Doppler echocardiographic evidence from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE),” Circulation, vol. 113, no. 2, pp. 266-272, 2006. · doi:10.1161/CIRCULATIONAHA.104.520817
[5] P. F. Bakker, H. W. Meijburg, J. W. de Vries et al., “Biventricular pacing in end-stage heart failure improves functional capacity and left ventricular function,” Journal of Interventional Cardiac Electrophysiology, vol. 4, no. 2, pp. 395-404, 2000. · doi:10.1023/A:1009854417694
[6] G. S. Nelson, R. D. Berger, B. J. Fetics et al., “Left ventricular or biventricular pacing improves cardiac function at diminished energy cost in patients with dilated cardiomyopathy and left bundle-branch block,” Circulation, vol. 102, no. 25, pp. 3053-3059, 2000.
[7] N. A. Marsan, M. M. Henneman, J. Chen et al., “Left ventricular dyssynchrony assessed by two three-dimensional imaging modalities: phase analysis of gated myocardial perfusion SPECT and tri-plane tissue Doppler imaging,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 35, no. 1, pp. 166-173, 2008. · doi:10.1007/s00259-007-0539-6
[8] D. H. Birnie and A. S. L. Tang, “The problem of non-response to cardiac resynchronization therapy,” Current Opinion in Cardiology, vol. 21, no. 1, pp. 20-26, 2006.
[9] D. A. Kass, “Ventricular resynchronization: pathophysiology and identification of responders,” Reviews in Cardiovascular Medicine, vol. 4, supplement, no. 2, pp. S3-S13, 2003.
[10] M. E. Spotnitz, M. E. Richmond, T. A. Quinn et al., “Relation of QRS shortening to cardiac output during temporary resynchronization therapy after cardiac surgery,” ASAIO Journal, vol. 56, no. 5, pp. 434-440, 2010. · doi:10.1097/MAT.0b013e3181e88ac6
[11] R. C. Jones, T. Svinarich, A. Rubin et al., “Optimal atrioventricular delay in CRT patients can be approximated using surface electrocardiography and device electrograms,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 11, pp. 1226-1232, 2010. · doi:10.1111/j.1540-8167.2010.01807.x
[12] C. M. Yu, E. Chau, J. E. Sanderson et al., “Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure,” Circulation, vol. 105, no. 4, pp. 438-445, 2002. · doi:10.1161/hc0402.102623
[13] Y. Mishiro, T. Oki, H. Yamada, T. Wakatsuki, and S. Ito, “Evaluation of left ventricular contraction abnormalities in patients with dilated cardiomyopathy with the use of pulsed tissue doppler imaging,” Journal of the American Society of Echocardiography, vol. 12, no. 11, pp. 913-920, 1999. · doi:10.1016/S0894-7317(99)70143-4
[14] F. Leclercq, F. X. Hager, J. C. Macia, C. J. Mariottini, J. L. Pasquié, and R. Grolleau, “Left ventricular lead insertion using a modified transseptal catheterization technique: a totally endocardial approach for permanent biventricular pacing in end-stage heart failure,” Pacing and Clinical Electrophysiology, vol. 22, no. 11, pp. 1570-1575, 1999.
[15] C. Leclercq, O. Faris, R. Tunin et al., “Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block,” Circulation, vol. 106, no. 14, pp. 1760-1763, 2002. · doi:10.1161/01.CIR.0000035037.11968.5C
[16] M. Reumann, D. Farina, R. Miri, S. Lurz, B. Osswald, and O. Dössel, “Computer model for the optimization of AV and VV delay in cardiac resynchronization therapy,” Medical and Biological Engineering and Computing, vol. 45, no. 9, pp. 845-854, 2007. · doi:10.1007/s11517-007-0230-x
[17] “Use of body-surface potential mapping and computer model simulations for optimal programming cardiac resynchronization therapy devices,” in Computers in Cardiology, R. Mohindra, J. L. Sapp, J. C. Clements, and B. M. Horá\vcek, Eds., Durham, NC, USA, 2007.
[18] G. Lecoq, C. Leclercq, E. Leray et al., “Clinical and electrocardiographic predictors of a positive response to cardiac resynchronization therapy in advanced heart failure,” European Heart Journal, vol. 26, no. 11, pp. 1094-1100, 2005. · doi:10.1093/eurheartj/ehi146
[19] D. D. Spragg, C. Leclercq, M. Loghmani et al., “Regional alterations in protein expression in the dyssynchronous failing heart,” Circulation, vol. 108, no. 8, pp. 929-932, 2003. · doi:10.1161/01.CIR.0000088782.99568.CA
[20] J. Dou, L. Xia, Y. Zhang et al., “Mechanical analysis of congestive heart failure caused by bundle branch block based on an electromechanical canine heart model,” Physics in Medicine and Biology, vol. 54, no. 2, pp. 353-371, 2009. · doi:10.1088/0031-9155/54/2/012
[21] R. L. Winslow, J. Rice, S. Jafri, E. Marban, and B. O’Rourke, “Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies,” Circulation Research, vol. 84, pp. 571-586, 1999.
[22] R. C. P. Kerekhoffs, O. P. Faris, P. H. M. Bovendeerd et al., “Electromechanics of paced left ventricle simulated by straightforward mathematical model: comparison with experiments,” American Journal of Physiology, vol. 289, no. 5, pp. H1889-H1897, 2005. · doi:10.1152/ajpheart.00340.2005
[23] R. C. P. Kerckhoffs, M. L. Neal, Q. Gu, J. B. Bassingthwaighte, J. H. Omens, and A. D. McCulloch, “Coupling of a 3D finite element model of cardiac ventricular mechanics to lumped systems models of the systemic and pulmonic circulation,” Annals of Biomedical Engineering, vol. 35, no. 1, pp. 1-18, 2007. · doi:10.1007/s10439-006-9212-7
[24] R. C. P. Kerckhoffs, P. H. M. Bovendeerd, F. W. Prinzen, K. Smits, and T. Arts, “Intra- and interventricular asynchrony of electromechanics in the ventricularly paced heart,” Journal of Engineering Mathematics, vol. 47, no. 3-4, pp. 201-216, 2003. · Zbl 1047.92016 · doi:10.1023/B:ENGI.0000007972.73874.da
[25] M. S. Suffoletto, K. Dohi, M. Cannesson, S. Saba, and J. Gorcsan III, “Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy,” Circulation, vol. 113, no. 7, pp. 960-968, 2006. · doi:10.1161/CIRCULATIONAHA.105.571455
[26] K. C. Bilchick, V. Dimaano, K. C. Wu et al., “Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy,” Cardiovascular Imaging, vol. 1, no. 5, pp. 561-568, 2008. · doi:10.1016/j.jcmg.2008.04.013
[27] M. J. Byrne, R. H. Helm, S. Daya et al., “Diminished left ventricular dyssynchrony and impact of resynchronization in failing hearts with right versus left bundle branch block,” Journal of the American College of Cardiology, vol. 50, no. 15, pp. 1484-1490, 2007. · doi:10.1016/j.jacc.2007.07.011
[28] Y. Zhang, L. Xia, Y. Gong, L. Chen, G. Hou, and M. Tang, “Parallel solution in simulation of cardiac excitation anisotropic propagation,” in Proceedings of the 4th International Conference on Functional Imaging and Modeling of the Heart (FIMH ’07), pp. 170-179, June 2007.
[29] Z. I. Whinnett, J. E. R. Davies, K. Willson et al., “Determination of optimal atrioventricular delay for cardiac resynchronization therapy using acute non-invasive blood pressure,” Europace, vol. 8, no. 5, pp. 358-366, 2006. · doi:10.1093/europace/eul017
[30] A. Rossillo, A. Verma, E. B. Saad et al., “Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up,” Journal of Cardiovascular Electrophysiology, vol. 15, no. 10, pp. 1120-1125, 2004. · doi:10.1046/j.1540-8167.2004.04089.x
[31] P. Peichl, J. Kautzner, R. , and J. Byte, “The spectrum of inter- and intraventricular conduction abnormalities in patients eligible for cardiac resynchronization therapy,” Pacing and Clinical Electrophysiology, vol. 27, no. 8, pp. 1105-1112, 2004. · doi:10.1111/j.1540-8159.2004.00592.x
[32] L. M. Rodriguez, C. Timmermans, A. Nabar, G. Beatty, and H. J. J. Wellens, “Variable patterns of septal activation in patients with left bundle branch block and heart failure,” Journal of Cardiovascular Electrophysiology, vol. 14, no. 2, pp. 135-141, 2003.
[33] R. H. Helm, M. Byrne, P. A. Helm et al., “Three-dimensional mapping of optimal left ventricular pacing site for cardiac resynchronization,” Circulation, vol. 115, no. 8, pp. 953-961, 2007. · doi:10.1161/CIRCULATIONAHA.106.643718
[34] G. Boriani, C. P. Müller, K. H. Seidl et al., “Randomized comparison of simultaneous biventricular stimulation versus optimized interventricular delay in cardiac resynchronization therapy. The Resynchronization for the HemodYnamic Treatment for Heart Failure Management II implantable cardioverter defibrillator (RHYTHM II ICD) study,” American Heart Journal, vol. 151, no. 5, pp. 1050-1058, 2006.
[35] H. Kanzaki, R. Bazaz, D. Schwartzman, K. Dohi, L. E. Sade, and J. Gorcsan III, “A mechanism for immediate reduction in mitral regurgitation after cardiac resynchronization therapy: insights from mechanical activation strain mapping,” Journal of the American College of Cardiology, vol. 44, no. 8, pp. 1619-1625, 2004. · doi:10.1016/j.jacc.2004.07.036
[36] G. Ansalone, P. Giannantoni, R. Ricci, P. Trambaiolo, F. Fedele, and M. Santini, “Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing,” Journal of the American College of Cardiology, vol. 39, no. 3, pp. 489-499, 2002. · doi:10.1016/S0735-1097(01)01772-7
[37] M. Bertini, M. Ziacchi, M. Biffi et al., “Interventricular delay interval optimization in cardiac resynchronization therapy guided by echocardiography versus guided by electrocardiographic QRS interval width,” American Journal of Cardiology, vol. 102, no. 10, pp. 1373-1377, 2008. · doi:10.1016/j.amjcard.2008.07.015
[38] B. Vidal, D. Tamborero, L. Mont et al., “Electrocardiographic optimization of interventricular delay in cardiac resynchronization therapy: a simple method to optimize the device,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 12, pp. 1252-1257, 2007. · doi:10.1111/j.1540-8167.2007.00983.x
[39] C. A. Taylor and C. A. Figueroa, “Patient-specific modeling of cardiovascular mechanics,” Annual Review of Biomedical Engineering, vol. 11, pp. 109-134, 2009.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.