×

The stochastic quasi-chemical model for bacterial growth: variational Bayesian parameter update. (English) Zbl 1385.92034

Summary: We develop Bayesian methodologies for constructing and estimating a stochastic quasi-chemical model (QCM) for bacterial growth. The deterministic QCM, described as a nonlinear system of ODEs, is treated as a dynamical system with random parameters, and a variational approach is used to approximate their probability distributions and explore the propagation of uncertainty through the model. The approach consists of approximating the parameters’ posterior distribution by a probability measure chosen from a parametric family, through minimization of their Kullback-Leibler divergence.

MSC:

92C99 Physiological, cellular and medical topics
62F15 Bayesian inference

Software:

LBFGS-B; PRMLT
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Banks, H., Bihari, K.: Modelling and estimating uncertainty in parameter estimation. Inverse Prob. 17, 95 (2001) · Zbl 1054.35121 · doi:10.1088/0266-5611/17/1/308
[2] Banks, H., Browning, W., Catenacci, J., Wood, T.: Analysis of a Quasi-chemical Kinetic Food Chemistry Model. Center for Research in Scientific Computation Technical Report CRSC-TR16-05. NC State University, Raleigh, NC (2016)
[3] Baranyi, J., Roberts, T.: A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 23, 277-294 (1994) · doi:10.1016/0168-1605(94)90157-0
[4] Baranyi, J., Roberts, T., McClure, P.: A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10, 43-59 (1993) · Zbl 0791.92015 · doi:10.1006/fmic.1993.1005
[5] Bickel, P., Doksum, K.: Mathematical Statistics: Basic Ideas and Selected Topics, vol. 2. CRC Press, Boca Raton (2015) · Zbl 1380.62002
[6] Bishop, C.: Pattern Recognition and Machine Learning, Information Science and Statistics. Springer, New York (2006) · Zbl 1107.68072
[7] Browning, W.J.: Near real-time quantification of stochastic model parameters. Tech. rep., prepared by Applied Mathematics Inc., Small Business Technology Transfer, Phase II Final Report, Army STTR Topic A13A-009 (28 September 2016)
[8] Buchanan, R.: Predictive microbiology: Mathematical modeling of microbial growth in foods. In: ACS Symposium Series-American Chemical Society, (1992) · Zbl 1348.60033
[9] Buchanan, R., Whiting, R., Damert, W.: When is simple good enough: a comparison of the Gompertz. Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 14, 313-326 (1997) · doi:10.1006/fmic.1997.0125
[10] Byrd, R., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190-1208 (1995) · Zbl 0836.65080 · doi:10.1137/0916069
[11] Chaloner, K., Verdinelli, I.: Bayesian experimental design: a review. Stat. Sci. 10(3), 273-304 (1995) · Zbl 0955.62617 · doi:10.1214/ss/1177009939
[12] Chaspari, T., Tsiartas, A., Tsilifis, P., Narayanan, S.: Markov chain monte carlo inference of parametric dictionaries for sparse bayesian approximations. IEEE Trans. Signal Process. 64, 3077-3092 (2016) · Zbl 1414.94111 · doi:10.1109/TSP.2016.2539143
[13] Chen, P., Zabaras, N., Bilionis, I.: Uncertainty propagation using infinite mixture of gaussian processes and variational bayesian inference. J. Comput. Phys. 284, 291-333 (2015) · Zbl 1351.76277 · doi:10.1016/j.jcp.2014.12.028
[14] Doona, C., Feeherry, F., Ross, E.: A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Int. J. Food Microbiol. 100, 21-32 (2005) · doi:10.1016/j.ijfoodmicro.2004.10.005
[15] Doona, C., Feeherry, F., Ross, E., Kustin, K.: Inactivation kinetics of listeria monocytogenes by highpressure processing: pressure and temperature variation. J. Food Sci. 77, M458-M465 (2012) · doi:10.1111/j.1750-3841.2012.02791.x
[16] Gershman, S., Hoffman, M., Blei, D.: Nonparametric variational inference. In: International Conference on Machine Learning (2012) · Zbl 1229.62109
[17] Goldbeter, A.: Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour. Cambridge University Press, Cambridge (1997) · Zbl 0837.92009
[18] Gompertz, B.: On the nature of the function expressive of the law of human mortality and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. Lond. 115, 513-583 (1825) · doi:10.1098/rstl.1825.0026
[19] Haario, H., Saksman, E., Tamminen, J.: An adaptive Metropolis algorithm. Bernoulli 7, 223-242 (2001) · Zbl 0989.65004 · doi:10.2307/3318737
[20] Hastings, W.: Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57, 97-109 (1970) · Zbl 0219.65008 · doi:10.1093/biomet/57.1.97
[21] Huber, M., Bailey, T., Durrant-Whyte, H., Hanebeck, U.: On entropy approximation for Gaussian mixture random vectors, In: IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, MFI 2008, (pp. 181-188). IEEE, (2008)
[22] Kullback, S., Leibler, R.: On information and sufficiency. Ann. Math. Stat. 22, 79-86 (1951) · Zbl 0042.38403 · doi:10.1214/aoms/1177729694
[23] McMeekin, T., Brown, J., Krist, K., Miles, D., Neumeyer, K., Nichols, D., Olley, J., Presser, K., Ratkowsky, D., Ross, T., Salter, M.: Quantitative microbiology: a basis for food safety. Emerg. Infect. Dis. 3, 541 (1997) · doi:10.3201/eid0304.970419
[24] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087-1091 (1953) · Zbl 1431.65006 · doi:10.1063/1.1699114
[25] Pinski, F., Simpson, G., Stuart, A., Weber, H.: Algorithms for Kullback-Leibler approximation of probability measures in infinite dimensions. SIAM J. Sci. Comput. 37, A2733-A2757 (2015) · Zbl 1348.60033 · doi:10.1137/14098171X
[26] Ricker, W.: Growth rates and models. Fish Physiol. 8, 677-743 (1979) · doi:10.1016/S1546-5098(08)60034-5
[27] Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Berlin (2013) · Zbl 0935.62005
[28] Roberts, G., Rosenthal, J.: Optimal scaling of discrete approximations to Langevin diffusions. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 60, 255-268 (1998) · Zbl 0913.60060 · doi:10.1111/1467-9868.00123
[29] Ross, E., Taub, I., Doona, C., Feeherry, F., Kustin, K.: The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods. Int. J. Food Microbiol. 99, 157-171 (2005) · doi:10.1016/j.ijfoodmicro.2004.07.019
[30] Schnute, J.: A versatile growth model with statistically stable parameters. Can. J. Fish. Aquat. Sci. 38, 1128-1140 (1981) · doi:10.1139/f81-153
[31] Silverman, B.: Density estimation for statistics and data analysis, vol. 26. CRC Press, Boca Raton (1986) · Zbl 0617.62042 · doi:10.1007/978-1-4899-3324-9
[32] Stuart, A.: Inverse problems: a bayesian perspective. Acta Numer. 19, 451-559 (2010) · Zbl 1242.65142 · doi:10.1017/S0962492910000061
[33] Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005) · Zbl 1074.65013 · doi:10.1137/1.9780898717921
[34] Taub, I., Ross, E., Feeherry, F.: Model for predicting the growth and death of pathogenic organisms. In: Van Impe, J.F.M., Gernaerts, K. (eds.) Proceedings of the Third International Conference on Predictive Modeling in Foods (2000)
[35] Taub, I., Feeherry, F., Ross, E., Kustin, K., Doona, C.: A quasi-chemical kinetics model for the growth and death of Staphylococcus aureus in intermediate moisture bread. J. Food Sci. 68, 2530-2537 (2003) · doi:10.1111/j.1365-2621.2003.tb07056.x
[36] Tsilifis, P., Bilionis, I., Katsounaros, I., Zabaras, N.: Computationally efficient variational approximations for bayesian inverse problems. J. Verif. Valid. Uncertain. Quantif. 1, 031004 (2016) · doi:10.1115/1.4034102
[37] Tsilifis, P., Ghanem, R., Hajali, P.: Efficient bayesian experimentation using an expected information gain lower bound. SIAM/ASA J. Uncertain. Quantif. 5, 30-62 (2017) · Zbl 1370.62019 · doi:10.1137/15M1043303
[38] Vrettas, M., Cornford, D., Opper, M.: Estimating parameters in stochastic systems: a variational bayesian approach. Phys. D 240, 1877-1900 (2011) · Zbl 1229.62109 · doi:10.1016/j.physd.2011.08.013
[39] Whiting, R.: Modeling bacterial survival in unfavorable environments. J. Ind. Microbiol. 12, 240-246 (1993) · doi:10.1007/BF01584196
[40] Whiting, R., Sackitey, S., Calderone, S., Morely, K., Phillips, J.: Model for the survival of Staphylococcus aureus in nongrowth environments. Int. J. Food Microbiol. 31, 231-243 (1996) · doi:10.1016/0168-1605(96)01002-1
[41] Ye, J., Rey, D., Kadakia, N., Eldridge, M., Morone, U., Rozdeba, P., Abarbanel, H., Quinn, J.: Systematic variational method for statistical nonlinear state and parameter estimation. Phys. Rev. E 92, 052901 (2015) · doi:10.1103/PhysRevE.92.052901
[42] Zwietering, M., Jongenburger, I., Rombouts, F., Van’t Riet, K.: Modeling of the bacterial growth curve. Appl. Environ. Microbiol. 56, 1875-1881 (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.