×

On electromagnetic forming processes in finitely strained solids: theory and examples. (English) Zbl 1196.78026

The paper treats the effects of electromagnetic fields on conducting elastic solid materials through the Lorenz body-force induced by electric current pulses. The theoretical approach is based on the analysis of solutions of Maxwell’s and Newton’s equations under the eddy current approximation. The numerical example considers mechanical responds of an elastic cylinder to the electromagnetic field activated by electric discharges through a coaxial coil.

MSC:

78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
74F15 Electromagnetic effects in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

LS-DYNA; FEAP
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abeyaratne, R.; Triantafyllidis, N., On the emergence of shear bands in plane strain, International Journal of Solids and Structures, 17, 12, 1113-1134 (1981) · Zbl 0476.73082
[2] Anand, L., On H. Hencky’s approximate strain-energy function for moderate deformations, ASME Journal of Applied Mechanics, 46, 78-82 (1979) · Zbl 0405.73032
[3] Balanethiram, V.; Daehn, G., Enhanced formability of interstitial free iron at high strain rates, Scripta Metallurgica et Materialia, 27, 1783-1788 (1992)
[4] Balanethiram, V.; Daehn, G., Hyperplasticity: increased forming limits at high workpiece velocity, Scripta Metallurgica et Materialia, 31, 515-520 (1994)
[5] Bradley, J.R., Schroth, J.G., Daehn, G.S., 2005. Electromagnetic formation of fuel cell plates. Patent US 2005/0217334 A1.; Bradley, J.R., Schroth, J.G., Daehn, G.S., 2005. Electromagnetic formation of fuel cell plates. Patent US 2005/0217334 A1.
[6] Chakkarapani, V.; Ravi-Chandar, K.; Liechti, K. M., Characterization of multiaxial constitutive properties of rubbery polymers, Journal of Engineering Materials and Technology, 128, 4, 489-494 (2006)
[7] Coleman, B. D.; Noll, W., The thermodynamics of elastic materials with heat conduction and viscosity, Archive for Rational Mechanics and Analysis, 13, 1, 167-178 (1963) · Zbl 0113.17802
[8] El-Azab, A.; Garnich, M.; Kapoor, A., Modeling of the electromagnetic forming of sheet metals: state-of-the-art and future needs, Journal of Materials Processing Technology, 142, 744-754 (2003)
[9] Eringen, A. C.; Maugin, G. A., Electrodynamics of Continua (1990), Springer: Springer New York
[10] FEAP, 2005. Finite Element Analysis Program. University of California at Berkeley (Civil and Environmental Engineering) and University of Michigan (Aerospace Engineering), Available at \(\langle;\) http://www.ce.berkeley.edu/ rlt/feap/\( \rangle;\); FEAP, 2005. Finite Element Analysis Program. University of California at Berkeley (Civil and Environmental Engineering) and University of Michigan (Aerospace Engineering), Available at \(\langle;\) http://www.ce.berkeley.edu/ rlt/feap/\( \rangle;\)
[11] Fenton, G. K.; Daehn, G. S., Modeling of electromagnetically formed sheet metal, Journal of Materials Processing Technology, 75, 6-16 (1998)
[12] Filipcsei, G.; Csetneki, I.; Szilágyi, A.; Zrínyi, M., Magnetic field-responsive smart polymer composites, (Advances in Polymer Science, vol. 206 (2007), Springer: Springer Berlin), 137-189
[13] Gourdin, W. H., Analysis and assessment of electromagnetic ring expansion as a high-strain-rate test, Journal of Applied Physics, 65, 2, 411-422 (1989)
[14] Hallquist, J.O. (Ed.), 2006. LS-Dyna Theory Manual. Livermore Software Technology Corp., Available at \(\langle;\) http://www2.lstc.com/pdf/ls-dyna_theory_manual_2006.pdf \(\rangle;\); Hallquist, J.O. (Ed.), 2006. LS-Dyna Theory Manual. Livermore Software Technology Corp., Available at \(\langle;\) http://www2.lstc.com/pdf/ls-dyna_theory_manual_2006.pdf \(\rangle;\)
[15] Hiptmair, R.; Ostrowski, J., Coupled boundary-element scheme for eddy-current computation, Journal of Engineering Mathematics, 51, 231-250 (2005) · Zbl 1066.78017
[16] Imbert, J.; Worswick, M.; Winkler, S.; Golovashchenko, S.; Dmitriev, V., Analysis of the increased formability of aluminum alloy sheet formed using electromagnetic forming, (Sheet/Hydro/Gas Forming Technology and Modeling 2005 (2005), SAE International)
[17] Imbert, J. M.; Winkler, S. L.; Worswick, M. J.; Oliveira, D. A.; Golovashchenko, S. F., The effect of tool-sheet interaction on damage evolution in electromagnetic forming of aluminum alloy sheet, Journal of Engineering Materials and Technology—Transactions of the ASME, 127, 145-153 (2005)
[18] Kankanala, S. V.; Triantafyllidis, N., On finitely strained magnetorheological elastomers, Journal of the Mechanics and Physics of Solids, 52, 2869-2908 (2004) · Zbl 1115.74321
[19] Kankanala, S. V.; Triantafyllidis, N., Magnetoelastic buckling of a rectangular block in plane strain, Journal of the Mechanics and Physics of Solids, 56, 1147-1169 (2008) · Zbl 1171.74354
[20] Karch, C.; Roll, K., Transient simulation of electromagnetic forming of aluminum tubes, Advanced Materials Research, 6-8, 639-648 (2005)
[21] Kleiner, M.; Brosius, A.; Blum, H.; Suttmeier, F.; Stiemer, M.; Svendsen, B.; Unger, J.; Reese, S., Benchmark simulation for coupled electromagnetic-mechanical metal forming processes, Annals of the German Society for Production Technology, XI/1, 85-90 (2004)
[22] Kovetz, A., Electromagnetic Theory (2000), Oxford University Press: Oxford University Press Oxford, UK · Zbl 1038.78001
[23] Lax, M.; Nelson, D., Maxwell equations in material form, Physical Review B, 13, 4, 1777-1784 (1976)
[24] Lazzari, B.; Nibbi, R., Variational principles in electromagnetism, IMA Journal of Applied Mathematics, 65, 45-95 (2000) · Zbl 0969.49025
[25] L’Eplattenier, P., Cook, G., Ashcraft, C., Burger, M., Shapiro, A., Daehn, G., Seth, M., 2006. Introduction of an electromagnetism module in LS-DYNA for coupled mechanical-thermal-electromagnetic simulations. In: Proceedings from 9th International LS-DYNA Users Conference, Livermore Software Technology Corp., Dearborn, MI.; L’Eplattenier, P., Cook, G., Ashcraft, C., Burger, M., Shapiro, A., Daehn, G., Seth, M., 2006. Introduction of an electromagnetism module in LS-DYNA for coupled mechanical-thermal-electromagnetic simulations. In: Proceedings from 9th International LS-DYNA Users Conference, Livermore Software Technology Corp., Dearborn, MI.
[26] Li, G.; Aluru, N. R., A Lagrangian approach for electrostatic analysis of deformable conductors, Journal of Microelectromechanical Systems, 11, 3, 245-254 (2002)
[27] Lubliner, J., Plasticity Theory (1990), Macmillan: Macmillan New York · Zbl 0745.73006
[28] Marsden, J. E.; West, M., Discrete mechanics and variational integrators, Acta Numerica, 10, 357-514 (2001) · Zbl 1123.37327
[29] Maugin, G. A., Continuum Mechanics of Electromagnetic Solids (1988), North-Holland: North-Holland Amsterdam · Zbl 0652.73002
[30] Maugin, G. A., Material Inhomogeneities in Elasticity (1993), Chapman & Hall: Chapman & Hall London · Zbl 0797.73001
[31] Nelson, D. F., Electric, Optic, and Acoustic Interactions in Dielectrics (1979), Wiley: Wiley New York, NY
[32] Oliveira, D. A.; Worswick, M. J.; Finn, M.; Newman, D., Electromagnetic forming of aluminum alloy sheet: free-form and cavity fill experiments and model, Journal of Materials Processing Technology, 170, 350-362 (2005)
[33] Reese, S.; Svendsen, B.; Stiemer, M.; Unger, J.; Schwarze, M.; Blum, H., On a new finite element technology for electromagnetic metal forming processes, Archive of Applied Mechanics, 74, 834-845 (2005) · Zbl 1133.74327
[34] Rieben, R., Wallin, B., White, D., 2006. Arbitrary lagrangian Eulerian electromechanics in 3D. In: Proceedings of the Progress in Electromagnetics Research Symposium, Cambridge, MA, pp. 265-269.; Rieben, R., Wallin, B., White, D., 2006. Arbitrary lagrangian Eulerian electromechanics in 3D. In: Proceedings of the Progress in Electromagnetics Research Symposium, Cambridge, MA, pp. 265-269.
[35] Seth, M., 2006. High velocity formability and factors affecting it. Ph.D. Thesis, The Ohio State University, Materials Science and Engineering Department, Columbus, OH.; Seth, M., 2006. High velocity formability and factors affecting it. Ph.D. Thesis, The Ohio State University, Materials Science and Engineering Department, Columbus, OH.
[36] Seth, M., Daehn, G.S., 2005. Effect of aspect ratio on high velocity formability of aluminum alloy. In: Bieler, T.R., Carsley, J.E., Fraser, H.L., Sears, J.W., Smugeresky, J.E. (Eds.), Materials Processing and Manufacturing Division Sixth Global Innovations Proceedings. Trends in Materials and Manufacturing Technologies for Transportation Industries and Powder Metallurgy Research and Development in the Transportation Industry. TMS, pp. 59-64.; Seth, M., Daehn, G.S., 2005. Effect of aspect ratio on high velocity formability of aluminum alloy. In: Bieler, T.R., Carsley, J.E., Fraser, H.L., Sears, J.W., Smugeresky, J.E. (Eds.), Materials Processing and Manufacturing Division Sixth Global Innovations Proceedings. Trends in Materials and Manufacturing Technologies for Transportation Industries and Powder Metallurgy Research and Development in the Transportation Industry. TMS, pp. 59-64.
[37] Seth, M.; Vohnout, V. J.; Daehn, G. S., Formability of steel sheet in high velocity impact, Journal of Materials Processing Technology, 168, 390-400 (2005)
[38] Stiemer, S.; Unger, J.; Svendsen, B.; Blum, H., Algorithmic formulation and numerical implementation of coupled electromagnetic-inelastic continuum models for electromagnetic metal forming, International Journal for Numerical Methods in Engineering, 68, 1301-1328 (2006) · Zbl 1133.74328
[39] Svendsen, B.; Chanda, T., Continuum thermodynamic formulation of models for electromagnetic thermoinelastic solids with application in electromagnetic metal forming, Continuum Mechanics and Thermodynamics, 17, 1-16 (2005) · Zbl 1107.74309
[40] Takatsu, N.; Kato, M.; Sato, K.; Tobe, T., High-speed forming of metal sheets by electromagnetic force, JSME International Journal, 31, 1, 142-148 (1988)
[41] Thomas, J. D.; Seth, M.; Daehn, G. S.; Bradley, J. R.; Triantafyllidis, N., Forming limits for electromagnetically expanded aluminum alloy tubesTheory and experiment, Acta Materialia, 55, 2863-2873 (2007)
[42] Triantafyllidis, N.; Waldenmyer, J., Onset of necking in electro-magnetically formed rings, Journal of the Mechanics and Physics of Solids, 52, 2127-2148 (2004) · Zbl 1081.74513
[43] Trimarco, C., Material electromagnetic fields and material forces, Archive of Applied Mechanics, 77, 2-3, 177-184 (2007) · Zbl 1124.74018
[44] Trimarco, C.; Maugin, G. A., Material mechanics of electromagnetic solids, (Configurational Mechanics of Materials. CISM Courses and Lectures, No. 427 (2001), Springer: Springer Wien, NY), 129-171 · Zbl 1024.74020
[45] Unger, J.; Stiemer, M.; Svendsen, B.; Blum, H., Multifield modeling of electromagnetic metal forming processes, Journal of Materials Processing Technology, 177, 270-273 (2006)
[46] Vivek, A., Daehn, G., 2008. Unpublished work.; Vivek, A., Daehn, G., 2008. Unpublished work.
[47] Zhang, H.; Ravi-Chandar, K., On the dynamics of necking and fragmentation—I. Real-time and post-mortem observations in Al 6061-O, International Journal of Fracture, 142, 183-217 (2006)
[48] Zhang, H., Ravi-Chandar, K., 2008a. Private communication.; Zhang, H., Ravi-Chandar, K., 2008a. Private communication.
[49] Zhang, H.; Ravi-Chandar, K., On the dynamics of necking and fragmentation—II. Effect of material properties, geometrical constraints and absolute size, International Journal of Fracture, 150, 3-36 (2008) · Zbl 1419.74037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.