×

Implementation and computational aspects of a 3D elastic wave modelling by PUFEM. (English) Zbl 1480.74158

Summary: This paper presents an enriched finite element model for three dimensional elastic wave problems, in the frequency domain, capable of containing many wavelengths per nodal spacing. This is achieved by applying the plane wave basis decomposition to the three-dimensional (3D) elastic wave equation and expressing the displacement field as a sum of both pressure (P) and shear (S) plane waves. The implementation of this model in 3D presents a number of issues in comparison to its 2D counterpart, especially regarding how S-waves are used in the basis at each node and how to choose the balance between P and S-waves in the approximation space. Various proposed techniques that could be used for the selection of wave directions in 3D are also summarised and used. The developed elements allow us to relax the traditional requirement which consists to consider many nodal points per wavelength, used with low order polynomial based finite elements, and therefore solve elastic wave problems without refining the mesh of the computational domain at each frequency. The effectiveness of the proposed technique is determined by comparing solutions for selected problems with available analytical models or to high resolution numerical results using conventional finite elements, by considering the effect of the mesh size and the number of enriching 3D plane waves. Both balanced and unbalanced choices of plane wave directions in space on structured mesh grids are investigated for assessing the accuracy and conditioning of this 3D PUFEM model for elastic waves.

MSC:

74J10 Bulk waves in solid mechanics
74J20 Wave scattering in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ortiz, P., Finite elements using plane wave basis for scattering of surface water waves, Phil. Trans. R. Soc. Lond. A, 362, 525-540 (2004) · Zbl 1083.76045
[2] Laghrouche, O.; Bettess, P.; Perrey-Debain, E.; Trevelyan, J., Wave interpolation finite elements for Helmholtz problems with jumps in the wave speed, Comput. Meth. Appl. Mech. Engng., 194, 367-381 (2005) · Zbl 1143.65395
[3] Tezaur, R.; Kalashnikova, I.; Farhat, C., The discontinuous enrichment method for medium-frequency Helmholtz problems with a spatially variable wavenumber, Comp. Methods Appl. Mech. Eng., 268, 126-140 (2014) · Zbl 1295.76030
[4] Huttunen, T.; Malinen, M.; Monk, P., Solving Maxwells equations using the ultra weak variational formulation, J. Comput. Phys., 223, 731758 (2007) · Zbl 1117.78011
[5] El Kacimi, A.; Laghrouche, O., Numerical modelling of elastic wave propagation in frequency domain by the partition of unity finite element method, Int. J. Numer. Methods Eng., 77, 1646-1669 (2009) · Zbl 1158.74485
[6] El Kacimi, A.; Laghrouche, O., Improvement of PUFEM for the numerical solution of high frequency elastic wave scattering on unstructured triangular mesh grids, Int. J. Numer. Methods Eng., 84, 330-350 (2010) · Zbl 1202.74166
[7] El Kacimi, A.; Laghrouche, O., Wavelet based ILU preconditioners for the numerical solution by PUFEM of high frequency elastic wave scattering, J. Comput. Phys., 230, 3119-3134 (2011) · Zbl 1316.74068
[8] Fomenko, I. S.; Golub, V. M.; Zhang, C.; Bui, Q. T.; Wang, S. Y., In-plane elastic wave propagation and band-gaps in layered functionally graded phononic crystals, Int. J. Solids Struct., 51, 13, 2491-2503 (2014)
[9] Monk, P.; DQ, W., A least-squares method for the Helmholtz equation, Comput. Methods Appl. Mech. Eng., 175, 121-136 (1999) · Zbl 0943.65127
[10] JM, M.; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput. Methods. Appl. Mech. Eng., 139, 289-314 (1996) · Zbl 0881.65099
[11] Babuška, I.; Melenk, J., The partition of unity method, Int. J. Numer. Methods Eng., 40, 727-758 (1997) · Zbl 0949.65117
[12] Laghrouche, O.; Bettess, P., Short wave modelling using special finite elements, J. Comput. Acoust., 8, 1, 189-210 (2000) · Zbl 1360.76146
[13] Laghrouche, O.; Bettess, P.; Astley, R., Modelling of short wave diffraction problems using approximating systems of plane waves, Int. J. Numer. Methods Eng., 54, 1501-1533 (2002) · Zbl 1098.76574
[14] Laghrouche, O.; Bettess, P.; Perrey-Debain, E.; Trevelyan, J., Plane wave basis for wave scattering in three dimensions, Comm. Numer. Meth. Engng., 19, 715-723 (2003) · Zbl 1031.65132
[15] Perrey-Debain, E.; Laghrouche, O.; Bettess, P.; Trevelyan, J., Plane wave basis finite elements and boundary elements for three dimensional wave scattering, Phil. Trans. R. Soc. Lond. A, 362, 561-577 (2004) · Zbl 1073.78016
[16] Ortiz, P.; Sanchez, E., An improved partition of unity finite element model for diffraction problems, Int. J. Numer. Methods Eng., 50, 2727-2740 (2001) · Zbl 1098.76576
[17] Cessenat, O.; Després, B., Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal., 35, 1, 255-299 (1998) · Zbl 0955.65081
[18] Huttunen, T.; Monk, P.; JP, K., Computation aspects of the ultra weak variational formulation, J. Comput. Phys., 182, 27-46 (2002) · Zbl 1015.65064
[19] Gabard, G., Discontinuous Galerkin methods with plane waves for time-harmonic problems, J. Comput. Phys., 225, 1961-1984 (2007) · Zbl 1123.65102
[20] Strouboulis, T.; Babuška, I.; Copps, K., The design and analysis of the generalized finite element method, Comput. Methods Appl. Mech Eng., 181, 43-69 (2000) · Zbl 0983.65127
[21] Farhat, C.; Harari, I.; Franca, L., The discontinuous enrichment method, Comput. Methods Appl. Mech. Eng., 190, 6455-6479 (2001) · Zbl 1002.76065
[22] Perrey-Debain, E.; Trevelyan, J.; Bettess, P., New special wave boundary elements for short wave problems, Comm. Num. Meth. Eng., 18, 4, 259-268 (2002) · Zbl 0996.65132
[23] MJ, P.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Comput. Methods Appl. Mech. Eng., 259, 93-102 (2013) · Zbl 1286.65176
[24] MJ, P.; Trevelyan, J.; Coates, G., Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Comput. Methods Appl. Mech. Eng., 284, 762-780 (2015) · Zbl 1425.65202
[25] Gillman, A.; Djellouli, R.; Amara, M., A mixed hybrid formulation based on oscillated finite element polynomials for solving Helmholtz problems, J. Comput. Appl. Math., 204, 515-525 (2007) · Zbl 1115.65116
[26] Amara, M.; Calandrab, H.; Dejllouli, R.; Grigoroscuta-Strugaruf, M., A stable discontinuous Galerkin-type method for solving efficiently Helmholtz problems, Comput. Struct., 106-107, 258-272 (2012)
[27] Ladevèze, P., A new computational approach for structure vibrations in the medium frequency range, C.R. Acad. Sci. Paris, 322, 12, 849-856 (1996) · Zbl 0920.73113
[28] Geuzaine, C.; Bedrossian, J.; Antoine, X., An amplitude formulation to reduce the pollution error in the finite element solution of time-harmonic scattering problems, IEEE Trans. Magn., 44, 6, 782-785 (2008)
[29] RJ, A.; Gamallo, P., Special short wave elements for flow acoustics, Comput. Methods Appl. Mech. Eng., 194, 341-353 (2005) · Zbl 1143.76568
[30] Perrey-Debain, E.; Trevelyan, J.; Bettess, P., P-wave and S-wave decomposition in boundary integral equation for plane elastodynamic problems, Commun. Numer. Meth. Eng., 19, 945-958 (2003) · Zbl 1047.74076
[31] Huttunen, T.; Monk, P.; Collino, F.; Kaipio, J., The ultra weak variational formulation for elastic wave problems, SIAM J. Sci. Comput., 25, 1717-1742 (2004) · Zbl 1093.74028
[32] Zhang, L.; Tezaur, R.; Farhat, C., The discontinuous enrichment method for elastic wave propagation in the medium-frequency regime, Int. J. Numer. Methods Eng., 66, 2086-2114 (2006) · Zbl 1110.74860
[33] Huttunen, T.; JP, K.; Monk, P., An ultra-weak method for acoustic fluid-solid interaction, J. Comput. Appl. Math., 213, 166-185 (2008) · Zbl 1182.76949
[34] Tezaur, R.; Zhang, L.; Farhat, C., A discontinuous enrichment method for capturing evanescent waves in multiscale fluid and fluid/solid problems, Comput. Methods Appl. Mech. Eng., 197, 1680-1698 (2008) · Zbl 1194.74476
[35] Laghrouche, O.; El Kacimi, A.; Trevelyan, J., Extension of the PUFEM to elastic wave problems in layered media, J. Comput. Acoust., 20, 14 (2012) · Zbl 1360.74076
[36] J-D, C.; Nennig, B.; Perrey-Debain, E., Performances of the partition of unity finite element method for the analysis of two-dimensional interior sound fields with absorbing materials, J. Sound Vib., 332, 8, 191-8-1929 (2013)
[37] Chazot, J. D.; Perrey-Debain, E.; Nennig, B., The partition of unity finite element method for the simulation of waves in air and poroelastic media, J. Acoust. Soc. Am., 135, 724-733 (2014)
[38] Hiptmair, R.; Moiola, A.; Perugia, I., A survey of Trefftz methods for the Helmholtz equation, Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, 237-278 (2016), Springer International Publishing · Zbl 1357.65282
[39] Massimi, P.; Tezaur, R.; Farhat, C., A discontinuous enrichment method for three-dimensional multiscale harmonic wave propagation problems in multi-fluid and fluid-solid media, Int. J. Numer. Methods Eng., 76, 400-425 (2008) · Zbl 1195.74292
[40] Luostari, T.; Huttunen, T.; Monk, P., Error estimates for ultra weak variational formulation in linear elasticity, M2AN: Math. Model. Numer. Anal., 47, 183-211 (2013) · Zbl 1457.74025
[41] Graff, F., Wave Motion in Elastic Solids (1975), Ohio State University: Ohio State University Ohio, Master’s thesis · Zbl 0314.73022
[42] Gilbarg, D.; Trudinger, N., Elliptic partial differential equations of second order (1983), Springer-Verlag · Zbl 0691.35001
[43] Leis, R., Boundary Value Problems in Mathematical Physics (1989), Teubner, Wiley · Zbl 0686.73006
[44] Kurihara, Y., Numerical integration of the primitive equations on a spherical grid, Mon. Weather Rev., 93, 399-415 (1965)
[45] Williamson, D., Integration of the primitive Baritropic model over a spherical geodesic grid., Mon. Weather Rev., 98, 512-520 (1965)
[46] Cullen, M., Integration of the primitive equations on a sphere using the finite element method., Q. J. Royal Meteorol. Soc., 100, 555-562 (1974)
[47] JR, B.; Frederickson, P., Icosahedral discretization of the two-sphere, SIAM J. Numer. Anal., 22, 1107-1115 (1985) · Zbl 0601.65084
[48] Grosu, E.; Harari, I., Three-dimensional element configurations for the discontinuous enrichment method for acoustics, Int. J. Numer. Methods Eng., 78, 1261-1291 (2009) · Zbl 1183.76806
[49] Beverly, L., The creation of algorithms designed for analyzing periodic surfaces of crystals and mineralogically important sites in molecular models of crystals (2000), Virginia Polytechnic Institute and State University, Phd dissertation
[50] Leopardi, P., Distributing points on the sphere: Partitions, separation, quadrature and energy (2007), University of New South Wales, Phd dissertation
[51] MJ, P.; Trevelyan, J.; Coates, G., The equal spacing of \(n\) points on a sphere with application to partition-of-unity wave diffraction problems engineering analysis with boundary elements, Eng. Anal. Bound Elem., 40, 114-122 (2014) · Zbl 1297.76146
[52] Bettess, P.; Bettess, J., A profile matrix solver with built-in constraint facility, Eng. Comput., 3, 209-216 (1986)
[53] Bettess, P.; Shirron, J.; Laghrouche, O.; Peseux, B.; Sugimoto, R.; Trevelyan, J., A numerical integration scheme for special finite elements for Helmholtz equation, Int. J. Numer. Meth. Engng., 56, 531-552 (2003) · Zbl 1022.65126
[54] Ávila-Carrera, R.; Sánchez-Sesma, F. J., Scattering and diffraction of elastic P- and S-waves by a spherical obstacle: a review of the classical solution, Geofísica Internacoional, 45, 3-21 (2006)
[55] Givoli, D., Numerical methods for problems in infinite domains (1992), Amsterdam, Elsevier Science Publishers · Zbl 0788.76001
[56] HSL, A collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk; HSL, A collection of Fortran codes for large-scale scientific computation. http://www.hsl.rl.ac.uk
[57] Perrey-Debain, E., Plane wave decomposition in the unit disc: convergence estimates and computational aspects, J. Comput. Appl. Math., 193, 140-156 (2006) · Zbl 1092.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.