×

A family of numerical schemes for kinematic flows with discontinuous flux. (English) Zbl 1200.76126

Summary: Multiphase flows of suspensions and emulsions are frequently approximated by spatially one-dimensional kinematic models, in which the velocity of each species of the disperse phase is an explicitly given function of the vector of concentrations of all species. The continuity equations for all species then form a system of conservation laws which describes spatial segregation and the creation of areas of different composition. This class of models also includes multi-class traffic flow, where vehicles belong to different classes according to their preferential velocities. Recently, these models were extended to fluxes that depend discontinuously on the spatial coordinate, which appear in clarifier-thickener models, in duct flows with abruptly varying cross-sectional area, and in traffic flow with variable road surface conditions. This paper presents a new family of numerical schemes for such kinematic flows with a discontinuous flux. It is shown how a very simple scheme for the scalar case, which is adapted to the “concentration times velocity” structure of the flux, can be extended to kinematic models with phase velocities that change sign, flows with two or more species (the system case), and discontinuous fluxes. In addition, a MUSCL-type upgrade in combination with a Runge-Kutta-type time discretization can be devised to attain second-order accuracy. It is proved that two particular schemes within the family, which apply to systems of conservation laws, preserve an invariant region of admissible concentration vectors, provided that all velocities have the same sign. Moreover, for the relevant case of a multiplicative flux discontinuity and a constant maximum density, it is proved that one scalar version converges to a \(BV_{t}\) entropy solution of the model. In the latter case, the compactness proof involves a novel uniform but local estimate of the spatial total variation of the approximate solutions. Numerical examples illustrate the performance of all variants within the new family of schemes, including applications to problems of sedimentation, traffic flow, and the settling of oil-in-water emulsions.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Benzoni-Gavage S and Colombo RM (2003). An n-populations model for traffic flow. Eur J Appl Math 14: 587–612 · Zbl 1143.82323 · doi:10.1017/S0956792503005266
[2] Wong GCK and Wong SC (2002). A multi-class traffic flow model–an extension of LWR model with heterogeneous drivers. Transp Res A 36: 827–841
[3] Wong SC and Wong GCK (2002). An analytical shock-fitting algorithm for LWR kinematic wave model embedded with linear speed-density relationship. Transp Res B 36: 683–706 · doi:10.1016/S0191-2615(01)00023-6
[4] Zhang M, Shu CW, Wong GCK and Wong SC (2003). A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model. J Comput Phys 191: 639–659 · Zbl 1041.90008 · doi:10.1016/S0021-9991(03)00344-9
[5] Zhang P, Liu RX, Wong SC and Dai SQ (2006). Hyperbolicity and kinematic waves of a class of multi-population partial differential equations. Eur J Appl Math 17: 171–200 · Zbl 1107.35389 · doi:10.1017/S095679250500642X
[6] Zhang P, Wong SC and Shu CW (2006). A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway. J Comput Phys 212: 739–756 · Zbl 1149.65319 · doi:10.1016/j.jcp.2005.07.019
[7] Berres S, Bürger R, Karlsen KH and Tory EM (2003). Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression. SIAM J Appl Math 64: 41–80 · Zbl 1047.35071 · doi:10.1137/S0036139902408163
[8] Bürger R, Karlsen KH, Tory EM and Wendland WL (2002). Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres. ZAMM Z Angew Math Mech 82: 699–722 · Zbl 1011.35017 · doi:10.1002/1521-4001(200210)82:10<699::AID-ZAMM699>3.0.CO;2-#
[9] Tory EM, Ford RA and Bargieł M (2003). Simulation of the sedimentation of monodisperse and polydisperse suspensions. In: Wendland, WL and Efendiev, M (eds) Analysis and simulation of multifield problems, pp 343–348. Springer-Verlag, Berlin · Zbl 1180.76060
[10] Xue B and Sun Y (2003). Modeling of sedimentation of polydisperse spherical beads with a broad size distribution. Chem Eng Sci 58: 1531–1543 · doi:10.1016/S0009-2509(02)00656-5
[11] Zeidan A, Rohani A, Bassi A and Whiting P (2003). Review and comparison of solids settling velocity models. Rev Chem Eng 19: 473–530
[12] Rosso F and Sona G (2001). Gravity-driven separation of oil-water dispersions. Adv Math Sci Appl 11: 127–151 · Zbl 0984.76094
[13] Mochon S (1987). An analysis of the traffic on highways with changing surface conditions. Math Model 9: 1–11 · doi:10.1016/0270-0255(87)90068-6
[14] Bürger R and Karlsen KH (2003). On a diffusively corrected kinematic-wave traffic model with changing road surface conditions. Math Models Meth Appl Sci 13: 1767–1799 · Zbl 1055.35071 · doi:10.1142/S0218202503003112
[15] Bürger R, García A, Karlsen KH and Towers JD (2006). On an extended clarifier-thickener model with singular source and sink terms. Eur J Appl Math 17: 257–292 · Zbl 1201.35130 · doi:10.1017/S0956792506006619
[16] Bürger R, Karlsen KH, Risebro NH and Towers JD (2004). Well-posedness in BV t and convergence of a difference scheme for continuous sedimentation in ideal clarifier-thickener units. Numer Math 97: 25–65 · Zbl 1053.76047 · doi:10.1007/s00211-003-0503-8
[17] Lighthill MJ and Whitham GB (1955). On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc Roy Soc London Ser A 229: 317–345 · Zbl 0064.20906 · doi:10.1098/rspa.1955.0089
[18] Richards PI (1956). Shock waves on the highway. Oper Res 4: 42–51 · doi:10.1287/opre.4.1.42
[19] Kynch GJ (1952). A theory of sedimentation. Trans Faraday Soc 48: 166–176 · doi:10.1039/tf9524800166
[20] Bürger R, Concha F, Fjelde KK and Karlsen KH (2000). Numerical simulation of the settling of polydisperse suspensions of spheres. Powder Technol 113: 30–54 · doi:10.1016/S0032-5910(99)00289-2
[21] Lockett MJ and Bassoon KS (1979). Sedimentation of binary particle mixtures. Powder Technol 24: 1–7 · doi:10.1016/0032-5910(79)80001-7
[22] Masliyah JH (1979). Hindered settling in a multiple-species particle system. Chem Eng Sci 34: 1166–1168 · doi:10.1016/0009-2509(79)85026-5
[23] Schneider W, Anestis G and Schaflinger U (1985). Sediment composition due to settling of particles of different sizes. Int J Multiphase Flow 11: 419–423 · doi:10.1016/0301-9322(85)90065-5
[24] Hartland S and Jeelani SAK (1987). Choice of model for predicting the dispersion height in liquid/liquid gravity settlers from batch settling data. Chem Eng Sci 42: 1927–1938 · doi:10.1016/0009-2509(87)80139-2
[25] Hartland S and Jeelani SAK (1988). Prediction of sedimentation and coalescence profiles in a decaying batch dispersion. Chem Eng Sci 43: 2421–2429 · doi:10.1016/0009-2509(88)85176-5
[26] Jeelani SAK and Hartland S (1988). Dynamic response of gravity settlers to changes in dispersion throughput. AIChE J 34: 335–340 · doi:10.1002/aic.690340220
[27] Jeelani SAK and Hartland S (1993). The continuous separation of liquid/liquid dispersions. Chem Eng Sci 48: 239–254 · doi:10.1016/0009-2509(93)80012-F
[28] Jeelani SAK, Pandit A and Hartland S (1990). Factors affecting the decay of batch liquid–liquid dispersions. Canad J Chem Eng 68: 924–931 · doi:10.1002/cjce.5450680605
[29] Nadiv C and Semiat R (1995). Batch settling of liquid–liquid dispersion. Ind Eng Chem Res 34: 2427–2435 · doi:10.1021/ie00046a026
[30] Frising T, Noïk C and Dalmazzone C (2006). The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review. J Disp Sci Technol 27: 1035–1057 · doi:10.1080/01932690600767098
[31] Panoussopoulos K (1998) Separation of Crude Oil-Water Emulsions: experimental techniques And Models. Dissertation, ETH Zürich, Switzerland
[32] Biesheuvel PM (2000). Particle segregation during pressure filtration for cast formation. Chem Eng Sci 55: 2595–2606 · doi:10.1016/S0009-2509(99)00536-9
[33] El-Genk MS, Kim SH and Erickson D (1985). Sedimentation of binary mixtures of particles of unequal densities and of different sizes. Chem Eng Commun 36: 99–119 · doi:10.1080/00986448508911249
[34] Falk V and D’Ortona U (2002). A polydisperse sedimentation and polydisperse packing model. Powder Technol 128: 229–335 · doi:10.1016/S0032-5910(02)00189-4
[35] Ha Z and Liu S (2002). Settling velocities of polydisperse concentrated suspensions. Canad J Chem Eng 80: 783–790 · doi:10.1002/cjce.5450800501
[36] Law HS, Masliyah JH, MacTaggart RS and Nandakumar K (1987). Gravity separation of bidisperse suspensions: light and heavy particle species. Chem Eng Sci 42: 1527–1538 · doi:10.1016/0009-2509(87)80158-6
[37] Patwardhan VS and Tien C (1985). Sedimentation and liquid fluidization of solid particles of different sizes and densities. Chem Eng Sci 40: 1051–1060 · doi:10.1016/0009-2509(85)85062-4
[38] Yan Y and Masliyah JH (1993). Sedimentation of solid particles in oil-in-water emulsions. Int J Multiphase Flow 19: 875–886 · Zbl 1144.76475 · doi:10.1016/0301-9322(93)90048-Y
[39] Ungarish M (1993). Hydrodynamics of suspensions. Springer-Verlag, Berlin
[40] Crowe C, Sommerfeld M and Tsuji Y (1998). Multiphase flows with droplets and particles. CRC Press, Boca Raton, FL, USA
[41] Drew DA and Passman SL (1999). Theory of multicomponent fluids. Springer-Verlag, New York
[42] Jackson R (2000). The Dynamics of Fluidized Particles. Cambridge University Press, Cambridge, UK · Zbl 0956.76004
[43] Brennen CE (2005). Fundamentals of multiphase flow. Cambridge University Press, Cambridge, UK · Zbl 1127.76001
[44] Klar A, Kühne RD and Wegener R (1996). Mathematical models for vehicular traffic. Surv Math Ind 6: 215–239 · Zbl 0859.90070
[45] Helbing D (1997). Verkehrsdynamik. Springer-Verlag, Berlin
[46] Bellomo N, Marasco A and Romano A (2002). From the modelling of driver’s behavior to hydrodynamic models and problems of traffic flow. Nonlin Anal Real World Appl 3: 339–363 · Zbl 1005.90016 · doi:10.1016/S1468-1218(01)00032-3
[47] Garavello M and Piccoli B (2006). Traffic flow on networks. American Institute of Mathematical Sciences, Springfield, MO, USA · Zbl 1136.90012
[48] Nelson P (2002). Traveling-wave solutions of the diffusively corrected kinematic-wave model. Math Comp Model 35: 561–579 · Zbl 0994.90031 · doi:10.1016/S0895-7177(02)80021-8
[49] Chodavarapu P, Munukutla SS and Peddieson J (1995). A comprehensive model of batch sedimentation. Fluid/Particle Sep J 8: 54–57
[50] Esipov SE (1995). Coupled Burgers equations: a model of polydispersive sedimentation. Phys Rev E 52: 3711–3718 · doi:10.1103/PhysRevE.52.3711
[51] Bonzani I (2000). Hydrodynamic models of traffic flow: drivers’ behaviour and nonlinear diffusion. Math Comp Model 31: 1–8 · Zbl 1042.90526 · doi:10.1016/S0895-7177(00)00042-X
[52] Braun J (2001) Segregation of granular media by diffusion and convection. Phys Rev E 64:paper 011307
[53] Bürger R, Fjelde KK, Höfler K and Karlsen KH (2001). Central difference solutions of the kinematic model of settling of polydisperse suspensions and three-dimensional particle-scale simulations. J Eng Math 41: 167–187 · Zbl 1014.76060 · doi:10.1023/A:1011960718366
[54] Qian S, Bürger R and Bau HH (2005). Analysis of sedimentation biodetectors. Chem Eng Sci 60: 2585–2598 · doi:10.1016/j.ces.2004.12.014
[55] Kurganov A and Tadmor E (2000). New high resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J Comput Phys 160: 241–282 · Zbl 0987.65085 · doi:10.1006/jcph.2000.6459
[56] Nessyahu H and Tadmor E (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J Comput Phys 87: 408–463 · Zbl 0697.65068 · doi:10.1016/0021-9991(90)90260-8
[57] Simura R and Ozawa K (2006). Mechanism of crystal redistribution in a sheet-like magma body: constraints from the Nosappumisaki and other Shoshonite intrusions in the Nemuro peninsula, Northern Jpn. J Petrol 47: 1809–1851 · doi:10.1093/petrology/egl028
[58] Wang X, Miles NJ and Kingman S (2006). Numerical study of centrifugal fluidized bed separation. Minerals Eng 19: 1109–1114 · doi:10.1016/j.mineng.2006.03.011
[59] Bürger R and Kozakevicius A (2007). Adaptive multiresolution WENO schemes for multi-species kinematic flow models. J Comput Phys 224: 1190–1222 · Zbl 1123.65305 · doi:10.1016/j.jcp.2006.11.010
[60] Kružkov SN (1970). First order quasilinear equations in several independent variables. Math USSR Sb 10: 217–243 · Zbl 0215.16203 · doi:10.1070/SM1970v010n02ABEH002156
[61] Adimurthi and Veerappa Gowda GD (2002). Conservation law with discontinuous flux. J Math Kyoto Univ 42: 27–70 · Zbl 1063.35114
[62] Audusse E and Perthame B (2005). Uniqueness for a scalar conservation law with discontinuous flux via adapted entropies. Proc Royal Soc Edinburgh Sect A 135: 253–265 · Zbl 1071.35079 · doi:10.1017/S0308210500003863
[63] Bachmann F and Vovelle J (2006). Existence and uniqueness of entropy solution of scalar conservation laws with a flux function involving discontinuous coefficients. Comm Partial Diff Eqns 31: 371–395 · Zbl 1102.35064 · doi:10.1080/03605300500358095
[64] Gimse T and Risebro NH (1992). Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J Math Anal 23: 635–648 · Zbl 0776.35034 · doi:10.1137/0523032
[65] Karlsen KH, Klingenberg C and Risebro NH (2003). A relaxation scheme for conservation laws with a discontinuous coefficient. Math Comp 73: 1235–1259 · Zbl 1078.65076 · doi:10.1090/S0025-5718-03-01625-9
[66] Karlsen KH, Risebro NH and Towers JD (2002). Upwind difference approximations for degenerate parabolic convection-diffusion equations with a discontinuous coefficient. IMA J Numer Anal 22: 623–664 · Zbl 1014.65073 · doi:10.1093/imanum/22.4.623
[67] Karlsen KH, Risebro NH, Towers JD (2003) L 1 stability for entropy solutions of nonlinear degenerate parabolic convection-diffusion equations with discontinuous coefficients. Skr K Nor Vid Selsk, 49 pp · Zbl 1036.35104
[68] Karlsen KH and Towers JD (2004). Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinuous space-time dependent flux. Chin Ann Math 25: 287–318 · Zbl 1112.65085 · doi:10.1142/S0252959904000299
[69] Klausen RA and Risebro NH (1999). Stability of conservation laws with discontinuous coefficients. J Diff Eqns 157: 41–60 · Zbl 0935.35097 · doi:10.1006/jdeq.1998.3624
[70] Klingenberg C and Risebro NH (1995). Convex conservation laws with discontinuous coefficients. Comm Partial Diff Eqns 20: 1959–1990 · Zbl 0836.35090 · doi:10.1080/03605309508821159
[71] Mishra S (2005). Convergence of upwind finite difference schemes for a scalar conservation law with indefinite discontinuities in the flux function. SIAM J Numer Anal 43: 559–577 · Zbl 1096.35085 · doi:10.1137/030602745
[72] Seguin N and Vovelle J (2003). Analysis and approximation of a scalar conservation law with a flux function with discontinuous coefficients. Math Models Meth Appl Sci 13: 221–257 · Zbl 1078.35011 · doi:10.1142/S0218202503002477
[73] Towers JD (2000). Convergence of a difference scheme for conservation laws with a discontinuous flux. SIAM J Numer Anal 38: 681–698 · Zbl 0972.65060 · doi:10.1137/S0036142999363668
[74] Towers JD (2001). A difference scheme for conservation laws with a discontinuous flux: the nonconvex case. SIAM J Numer Anal 39: 1197–1218 · Zbl 1055.65104 · doi:10.1137/S0036142900374974
[75] Bürger R, Karlsen KH, Mishra S and Towers JD (2005). On conservation laws with discontinuous flux. In: Wang, Y and Hutter, K (eds) Trends in applications of mathematics to mechanics, pp 75–84. Shaker Verlag, Aachen
[76] Bürger R, Karlsen KH and Towers JD (2005). A mathematical model of continuous sedimentation of flocculated suspensions in clarifier-thickener units. SIAM J Appl Math 65: 882–940 · Zbl 1089.76061 · doi:10.1137/04060620X
[77] Diehl S (2001). Operating charts for continuous sedimentation I: control of steady states. J Eng Math 41: 117–144 · Zbl 1128.76370 · doi:10.1023/A:1011959425670
[78] Diehl S (2005). Operating charts for continuous sedimentation II: step responses. J Eng Math 53: 139–185 · Zbl 1086.76069 · doi:10.1007/s10665-005-6430-1
[79] Diehl S (2006). Operating charts for continuous sedimentation III: control of step inputs. J Eng Math 54: 225–259 · Zbl 1189.76667 · doi:10.1007/s10665-005-7720-3
[80] Diehl S (2006) Operating charts for continuous sedimentation IV: limitations for control of dynamic behaviour. J Eng Math (to appear) · Zbl 1189.76667
[81] Bürger R, Karlsen KH, Klingenberg C and Risebro NH (2003). A front tracking approach to a model of continuous sedimentation in ideal clarifier-thickener units. Nonlin Anal Real World Appl 4: 457–481 · Zbl 1013.35052 · doi:10.1016/S1468-1218(02)00071-8
[82] Berres S, Bürger R and Karlsen KH (2004). Central schemes and systems of conservation laws with discontinuous coefficients modeling gravity separation of polydisperse suspensions. J Comp Appl Math 164–165 164(165): :53–80 · Zbl 1107.76366
[83] Bürger R, García A, Karlsen KH, Towers JD (2007) A kinematic model of continuous separation and classification of polydisperse suspensions. Computers & Chemical Eng (to appear)
[84] Crandall MG and Majda A (1980). Monotone difference approximations for scalar conservation laws. Math Comp 34: 1–21 · Zbl 0423.65052 · doi:10.1090/S0025-5718-1980-0551288-3
[85] Harten A (1983). High Resolution schemes for hyperbolic conservation laws. J Comput Phys 49: 357–393 · Zbl 0565.65050 · doi:10.1016/0021-9991(83)90136-5
[86] Tadmor E (1984). Numerical viscosity and the entropy condition for conservative difference schemes. Math Comp 43: 369–381 · Zbl 0587.65058 · doi:10.1090/S0025-5718-1984-0758189-X
[87] Le Veque RJ (1992). Numerical methods for conservation laws. Birkhauser Verlag, Basel, Switzerland
[88] Gottlieb S, Shu CW and Tadmor E (2001). Strong stability preserving high-order time discretization methods. SIAM Rev 43: 89–112 · Zbl 0967.65098 · doi:10.1137/S003614450036757X
[89] Osher S (1985). Convergence of generalized MUSCL schemes. SIAM J Numer Anal 22: 947–961 · Zbl 0627.35061 · doi:10.1137/0722057
[90] Shannon PT, Stroupe E and Tory EM (1963). Batch and continuous thickening. Ind Eng Chem Fund 2: 203–211 · doi:10.1021/i160007a008
[91] Das SK and Biswas MN (2003). Separation of oil–water mixture in tank. Chem Eng Comm 190: 116–127 · doi:10.1080/00986440302095
[92] Hilliges M and Weidlich W (1995). A phenomenological model for dynamic traffic flow in networks. Transp Res B 29: 407–431 · doi:10.1016/0191-2615(95)00018-9
[93] Bürger R, García A, Karlsen KH, Towers JD (2007) Difference schemes and entropy solutions for an inhomogeneous kinematic traffic flow model. Preprint (2007), available at http://www.math.ntnu.no/conservation/
[94] Audusse E and Perthame B (2005). Uniqueness for a scalar conservation law with discontinuous flux via adapted entropies. Proc Royal Soc Edinburgh 135: 253–265 · Zbl 1071.35079 · doi:10.1017/S0308210500003863
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.