×

Optimal eighth-order iterative methods for approximating multiple zeros of nonlinear functions. (English) Zbl 1434.65071

A new family of optimal eighth-order iterative schemes for finding multiple zeros of a function \(f\) with multiplicity \(m \ge 1\) is introduced. Several concrete problems with simple and multiple zeros are presented. A comparison with the existing eighth-order iterative schemes is provided.

MSC:

65H05 Numerical computation of solutions to single equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Behl, R.; Cordero, A.; Motsa, SS; Torregrosa, JR, On developing fourth-order optimal families of methods for multiple roots and their dynamics, Appl. Math. Comput., 265, 15, 520-532 (2015) · Zbl 1410.65147
[2] Behl, R., Cordero, A., Motsa, S.S., Torregrosa, J.R.: An eighth-order family of optimal multiple root finders and its dynamics. Numer. Algorithm (2017). 10.1007/s11075-017-0361-6 · Zbl 1402.65042 · doi:10.1007/s11075-017-0361-6
[3] Behl, R.; Cordero, A.; Motsa, SS; Torregrosa, JR; Kanwar, V., An optimal fourth-order family of methods for multiple roots and its dynamics, Numer. Algorithm, 71, 4, 775-796 (2016) · Zbl 1339.65065 · doi:10.1007/s11075-015-0023-5
[4] Chicharro, F.I., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameters planes of iterative families and methods. Sci. World J. (2013) (Article ID 780153, 9 pages) · Zbl 1305.70018
[5] Geum, YH; Kim, YI; Neta, B., A class of two-point sixth-order multiple-zero finders of modified double-Newton type and their dynamics, Appl. Math. Comput., 270, 387-400 (2015) · Zbl 1410.65159
[6] Geum, YH; Kim, YI; Neta, B., A sixth-order family of three-point modified Newton-like multiple-root finders and the dynamics behind their extraneous fixed points, Appl. Math. Comput., 283, 120-140 (2016) · Zbl 1410.65160
[7] Geum, YH; Kim, YI; Neta, B., Constructing a family of optimal eighth-order modified Newton-type multiple-zero finders along with dynamics be-hind their purely imaginary extraneous fixed points, J. Comput. Appl. Math., 333, 131-156 (2018) · Zbl 1380.65090 · doi:10.1016/j.cam.2017.10.033
[8] Hueso, JL; Martínez, E.; Teruel, C., Determination of multiple roots of nonlinear equations and applications, J. Math. Chem., 53, 880-892 (2015) · Zbl 1331.65073 · doi:10.1007/s10910-014-0460-8
[9] Jay, LO, A note on Q-order of convergence, BIT Numer. Math., 41, 422-429 (2001) · Zbl 0973.40001 · doi:10.1023/A:1021902825707
[10] Kung, HT; Traub, JF, Optimal order of one-point and multipoint iteration, Assoc. Comput. Mach., 21, 643-651 (1974) · Zbl 0289.65023 · doi:10.1145/321850.321860
[11] Li, SG; Cheng, LZ; Neta, B., Some fourth-order nonlinear solvers with closed formulae for multiple roots, Comput. Math. Appl., 59, 126-135 (2010) · Zbl 1189.65093 · doi:10.1016/j.camwa.2009.08.066
[12] Li, S.; Liao, X.; Cheng, L., A new fourth-order iterative method for finding multiple roots of nonlinear equations, Appl. Math. Comput., 215, 1288-1292 (2009) · Zbl 1175.65054
[13] Liu, B.; Zhou, X., A new family of fourth-order methods for multiple roots of nonlinear equations, Nonlinear Anal. Model. Control, 18, 2, 143-152 (2013) · Zbl 1303.65036 · doi:10.15388/NA.18.2.14018
[14] Neta, B., Extension of Murakami’s high-order non-linear solver to multiple roots, Int. J. Comput. Math., 87, 5, 1023-1031 (2010) · Zbl 1192.65052 · doi:10.1080/00207160802272263
[15] Ostrowski, AM, Solution of Equations and Systems of Equations (1960), New York: Academic Press, New York · Zbl 0115.11201
[16] Petković, MS; Neta, B.; Petković, LD; Dz̆unić, J., Multipoint Methods for Solving Nonlinear Equations (2013), New York: Academic Press, New York · Zbl 1286.65060
[17] Shacham, M., Numerical solution of constrained nonlinear algebraic equations, Int. J. Numer. Method Eng., 23, 1455-1481 (1986) · Zbl 0597.65044 · doi:10.1002/nme.1620230805
[18] Sharifi, M.; Babajee, DKR; Soleymani, F., Finding the solution of nonlinear equations by a class of optimal methods, Comput. Math. Appl., 63, 764-774 (2012) · Zbl 1247.65066 · doi:10.1016/j.camwa.2011.11.040
[19] Sharma, JR; Sharma, R., Modified Jarratt method for computing multiple roots, Appl. Math. Comput., 217, 878-881 (2010) · Zbl 1203.65084
[20] Soleymani, F.; Babajee, DKR, Computing multiple zeros using a class of quartically convergent methods, Alex. Eng. J., 52, 531-541 (2013) · doi:10.1016/j.aej.2013.05.001
[21] Soleymani, F.; Babajee, DKR; Lofti, T., On a numerical technique for finding multiple zeros and its dynamic, Egypt. Math. Soc., 21, 346-353 (2013) · Zbl 1281.65079 · doi:10.1016/j.joems.2013.03.011
[22] Thukral, R., Introduction to higher-order iterative methods for finding multiple roots of nonlinear equations, J. Math. (2013) · Zbl 1268.65076 · doi:10.1155/2013/404635
[23] Thukral, R., A new family of fourth-order iterative methods for solving nonlinear equations with multiple roots, Numer. Math. Stoch., 6, 1, 37-44 (2014) · Zbl 1360.65147
[24] Traub, JF, Iterative Methods for the Solution of Equations (1964), Englewood Cliffs: Prentice-Hall, Englewood Cliffs · Zbl 0121.11204
[25] Zafar, F., Cordero, A., Quratulain, R., Torregrosa, J.R.: Optimal iterative methods for finding multiple roots of nonlinear equations using free parameters. J. Math. Chem. (2017). 10.1007/s10910-017-0813-1 · Zbl 1404.92231 · doi:10.1007/s10910-017-0813-1
[26] Zhou, X.; Chen, X.; Song, Y., Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations, Comput. Math. Appl., 235, 4199-4206 (2011) · Zbl 1219.65048 · doi:10.1016/j.cam.2011.03.014
[27] Zhou, X.; Chen, X.; Song, Y., Families of third and fourth order methods for multiple roots of nonlinear equations, Appl. Math. Comput., 219, 6030-6038 (2013) · Zbl 1273.65064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.