Tornberg, Anna-Karin; Engquist, Björn Regularization for accurate numerical wave propagation in discontinuous media. (English) Zbl 1136.65084 Methods Appl. Anal. 13, No. 3, 247-274 (2006). Summary: Structured computational grids are the basis for highly efficient numerical approximations of wave propagation. When there are discontinuous material coefficients the accuracy is typically reduced and there may also be stability problems. In a sequence of recent papers B. Gustafsson and E. Mossberg [SIAM J. Sci. Comput. 26, No. 1, 259–271 (2004; Zbl 1075.65112), B. Gustafsson and P. Wahlund, ibid. 26, No. 1, 272–293 (2004; Zbl 1077.65092); Time compact high order difference methods for wave propagation, 2-D, J. Sci. Comput. 25, 195–211 (2005)] proved stability of the Yee scheme [cf. K. S. Yee, IEEE Trans. Antennas Propag. 14, 302–307 (1966)] and a higher order difference approximation based on a similar staggered structure, for the wave equation with general coefficients. In this paper, the Yee discretization is improved from first to second order by modifying the material coefficients close to the material interface. This is proven in the \(L^2\) norm. The modified higher order discretization yields a second order error component originating from the discontinuities, and a fourth order error from the smooth regions. The efficiency of each original method is retained since there is no special structure in the difference stencil at the interface. The main focus of this paper is on one spatial dimension, with the derivation of a second order algorithm for a two dimensional example given in the last section. Cited in 3 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 35L05 Wave equation 35R05 PDEs with low regular coefficients and/or low regular data 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 65M15 Error bounds for initial value and initial-boundary value problems involving PDEs Keywords:Yee scheme; discontinuous material coefficients; regularization; numerical examples; error bounds; stability; wave equation; algorithm PDF BibTeX XML Cite \textit{A.-K. Tornberg} and \textit{B. Engquist}, Methods Appl. Anal. 13, No. 3, 247--274 (2006; Zbl 1136.65084) Full Text: DOI Euclid