zbMATH — the first resource for mathematics

An accurate integral equation method for simulating multi-phase Stokes flow. (English) Zbl 1349.76635
Summary: We introduce a numerical method based on an integral equation formulation for simulating drops in viscous fluids in the plane. It builds upon the method introduced by Kropinski in 2001 , but improves on it by adding an interpolatory quadrature approach for handling near-singular integrals. Such integrals typically arise when drop boundaries come close to one another, and are difficult to compute accurately using standard quadrature rules. Adapting the interpolatory quadrature method introduced by Helsing and Ojala in 2008 to the current application, very general drop configurations can be handled while still maintaining stability and high accuracy. The performance of the new method is demonstrated by some challenging numerical examples.

76M25 Other numerical methods (fluid mechanics) (MSC2010)
65R20 Numerical methods for integral equations
45E05 Integral equations with kernels of Cauchy type
76D07 Stokes and related (Oseen, etc.) flows
76Txx Multiphase and multicomponent flows
Full Text: DOI arXiv
[1] Alpert, B. K., Hybrid Gauss-trapezoidal quadrature rules, SIAM J. Sci. Comput., 20, 1551-1584, (1999) · Zbl 0933.41019
[2] Bazhlekov, I. B.; Anderson, P. D.; Meijer, H., Nonsingular boundary integral method for deformable drops in viscous flows, Phys. Fluids, 16, 1064, (2004) · Zbl 1186.76044
[3] Beale, J. T.; Lai, M.-C., A method for computing nearly singular integrals, SIAM J. Numer. Anal., 38, 1902-1925, (2001) · Zbl 0988.65025
[4] Bruno, O.; Kunyansky, L. A., A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications, J. Comput. Phys., 169, (2001) · Zbl 1052.76052
[5] Deshmukh, S. D.; Thaokar, R. M., Deformation, breakup and motion of a perfect dielectric drop in a quadrupole electric field, Phys. Fluids, 24, (2012)
[6] Fries, T. P.; Belytschko, T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84, 253-304, (2010) · Zbl 1202.74169
[7] Greengard, L.; Lee, J. Y., Accelerating the nonuniform fast Fourier transform, SIAM Rev., 43, 443-454, (2004) · Zbl 1064.65156
[8] Greengard, L.; Rokhlin, V., A fast algorithm for particle simulations, J. Comput. Phys., 73, 325-348, (1987) · Zbl 0629.65005
[9] Greengard, L.; Rokhlin, V., A new version of the fast multipole method for the Laplace equation in three dimensions, Acta Numer., 6, 229-269, (1997) · Zbl 0889.65115
[10] J. Helsing, A higher-order singularity subtraction technique for the discretization of singular integral operators on curved surfaces, arXiv 73 (2013) 325-348.
[11] Helsing, J.; Ojala, R., On the evaluation of layer potentials close to their sources, J. Comput. Phys., 227, 2899-2921, (2008) · Zbl 1135.65404
[12] Hou, T. Y.; Lowengrub, J. S.; Shelley, M. J., Removing the stiffness from interfacial flows with surface tension, J. Comput. Phys., 114, 312-338, (1994) · Zbl 0810.76095
[13] Joensson, H. N.; Andersson Svahn, H., Droplet microfluidics - a tool for single-cell analysis, Angew. Chem., Int. Ed., 51, 12176-12192, (2012)
[14] Johnston, P. R.; Elliott, D., A sinh transformation for evaluating nearly singular boundary element integrals, Int. J. Numer. Methods Eng., 62, 564-578, (2005) · Zbl 1119.65318
[15] Kapur, S.; Rokhlin, V., High-order corrected trapezoidal quadrature rules for singular functions, SIAM J. Numer. Anal., 34, 1331-1356, (1997) · Zbl 0891.65019
[16] Kl√∂ckner, A.; Barnett, A.; Greengard, L.; O’Neil, M., Quadrature by expansion: a new method for the evaluation of layer potentials, J. Comput. Phys., 252, 332-349, (2013) · Zbl 1349.65094
[17] Kropinski, M. C., An efficient numerical method for studying interfacial motion in two-dimensional creeping flows, J. Comput. Phys., 171, 479-508, (2001) · Zbl 1047.76572
[18] Kropinski, M. C., Numerical methods for multiple inviscid interfaces in creeping flows, J. Comput. Phys., 180, 1-24, (2002) · Zbl 1130.76391
[19] Kropinski, M. C.; Lushi, E., Efficient numerical methods for multiple surfactant coated bubbles in a two-dimensional Stokes flow, J. Comput. Phys., 230, 4466-4487, (2011) · Zbl 1416.76216
[20] LeVeque, R. J.; Li, Z., Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput., 18, 709-735, (1997) · Zbl 0879.76061
[21] Lindbo, D.; Tornberg, A.-K., Spectrally accurate fast summation for periodic Stokes potentials, J. Comput. Phys., 229, 8994-9010, (2010) · Zbl 1282.76151
[22] D. Lindbo, A.-K. Tornberg, Fast and spectrally accurate summation of 2-periodic Stokes potentials, arXiv 111 (2011) 1815.
[23] Majdanac, A., A fast numerical method for the interfacial motion of an electrically conducting bubble in a Stokes flow, (2008), Simon Fraser University, Master’s thesis
[24] Marin, O.; Runborg, O.; Tornberg, A.-K., Corrected trapezoidal rules for a class of singular functions, IMA J. Numer. Anal., 34, 1509-1540, (2014) · Zbl 1304.65115
[25] Martinsson, P. G.; Rokhlin, V., A fast direct solver for boundary integral equations in two dimensions, J. Comput. Phys., 205, 1-23, (2005) · Zbl 1078.65112
[26] Nitsche, M.; Ceniceros, H. D.; Karniala, A. L.; Naderi, S., High order quadratures for the evaluation of interfacial velocities in axi-symmetric Stokes flow, J. Comput. Phys., 229, 6318-6342, (2010) · Zbl 1425.76070
[27] Peskin, C. S., Numerical-analysis of blood-flow in heart, J. Comput. Phys., 25:220-252, (1977) · Zbl 0403.76100
[28] Pozrikidis, C., Boundary integral and singularity methods for linearized viscous flow, (1992), Cambridge University Press · Zbl 0772.76005
[29] Quaife, B.; Biros, G., High-volume fraction simulations of two-dimensional vesicle suspensions, J. Comput. Phys., 274, 245-267, (2014) · Zbl 1351.76296
[30] Saad, Y.; Schultz, M. H., GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7, 856-869, (1986) · Zbl 0599.65018
[31] Saintillan, D.; Darve, E.; Shaqfeh, E., A smooth particle-mesh ewald algorithm for Stokes suspension simulations: the sedimentation of fibers, Phys. Fluids, 17, 033301, (2005) · Zbl 1187.76458
[32] Scardovelli, R.; Zaleski, S., Interface reconstruction with least-square fit and split eulerian-Lagrangian advection, Int. J. Numer. Methods Fluids, 41, 251-274, (2003) · Zbl 1047.76080
[33] Seemann, R.; Brinkmann, M.; Pfohl, T.; Herminghaus, S., Droplet based microfluidics, Rep. Prog. Phys., 75, 016601, (2012)
[34] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341-372, (2003) · Zbl 1041.76057
[35] Tornberg, A.-K.; Engquist, B., Numerical approximations of singular source terms in differential equations, J. Comput. Phys., 200, 462-488, (2004) · Zbl 1115.76392
[36] Tryggvason, G.; Bunner, B.; Esmaeeli, A.; Juric, D.; Al-Rawahi, N.; Tauber, W.; Han, J.; Nas, S.; Jan, Y. J., A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169, 708-759, (2001) · Zbl 1047.76574
[37] Wadbro, E.; Zahedi, S.; Kreiss, G.; Berggren, M., A uniformly well-conditioned unfitted nietsche method for interface problems, BIT Numer. Math., 53, 791-820, (2013) · Zbl 1279.65134
[38] Wang, H.; Lei, T.; Li, J.; Huang, J.; Yao, Z., A parallel fast multipole accelerated integral equation scheme for 3D Stokes equations, Int. J. Numer. Methods Eng., 70, 812-839, (2007) · Zbl 1194.76221
[39] Ying, L.; Biros, G.; Zorin, D., A high-order 3D boundary integral equation solver for elliptic PDEs in smooth domains, J. Comput. Phys., 219, 247-275, (2006) · Zbl 1105.65115
[40] Zhao, H.; Isfahani, A. H.; Olson, L. N.; Freund, J. B., A spectral boundary integral method for flowing blood cells, J. Comput. Phys., 229, 3726-3744, (2010) · Zbl 1186.92013
[41] Zinchenko, A. Z.; Davis, R. H., An efficient algorithm for hydrodynamical interaction of many deformable drops, J. Comput. Phys., 157, 2, 539-587, (2000) · Zbl 0961.76055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.