Biparametric complexities and generalized Planck radiation law.

*(English)*Zbl 1381.81180##### MSC:

81V80 | Quantum optics |

81P05 | General and philosophical questions in quantum theory |

94A17 | Measures of information, entropy |

82B30 | Statistical thermodynamics |

83F05 | Cosmology |

03F20 | Complexity of proofs |

##### Keywords:

biparametric measures of complexity of probability distributions; information theory of the blackbody radiation in a multidimensional universe; Planck distribution; Shannon entropy; Crámer-Rao complexity; Fisher-Shannon complexity; Heisenberg-Rényi measures of complexity##### Software:

DLMF
PDF
BibTeX
XML
Cite

\textit{D. Puertas-Centeno} et al., J. Phys. A, Math. Theor. 50, No. 50, Article ID 505001, 22 p. (2017; Zbl 1381.81180)

Full Text:
DOI

##### References:

[1] | Arndt C 2001 Information Measures (Berlin: Springer) |

[2] | Parr R G and Yang W 1989 Density-Functional Theory of Atoms and Molecules (New York: Oxford University Press) |

[3] | Frieden B R 2004 Science from Fisher Information (Cambridge: Cambridge University Press) |

[4] | Sen K D (ed) 2012 Statistical Complexity (Berlin: Springer) |

[5] | Fisher R A 1925 Theory of statistical estimation Proc. Camb. Phil. Soc.22 700 |

[6] | Fisher R A 1972 Collected Papers ed J H Bennet (South Australia: University of Adelaide Press) pp 15-40 (reprinted) |

[7] | Shannon C E and Weaver W 1949 The Mathematical Theory of Communication (Urbana: University of Illinois Press) |

[8] | Rényi A 1970 Probability Theory (Amsterdam: North-Holland) |

[9] | Tsallis C 1988 Possible generalization of Boltzmann-Gibbs statistics J. Stat. Phys.52 479 |

[10] | Gell-Mann M 1995 What is complexity? Complexity1 1 |

[11] | Gell-Mann M and Lloyd S 1996 Information measures, effective complexity and total information Complexity2 44 |

[12] | Badii R and Politi A 1997 Complexity: Hierarchical Structure and Scaling in Physics (New York: Henry Holt) |

[13] | Seitz W and Kirwan A D Jr 2014 Entropy versus majorization: what determines complexity? Entropy16 3793 |

[14] | Rudnicki L, Toranzo I V, Sánchez-Moreno P and Dehesa J S 2016 Monotone measures of statistical complexity Phys. Lett. A 380 377 |

[15] | Dehesa J S, Sánchez-Moreno P and Yáñez R J 2006 Crámer-Rao information plane of orthogonal hypergeometric polynomials J. Comput. Appl. Math.186 523 |

[16] | Antolín J and Angulo J C 2009 Complexity analysis of ionization processes and isoelectronic series Int. J. Quant. Chem.109 586 |

[17] | Romera E and Dehesa J S 2004 The Fisher-Shannon information plane, an electron correlation tool J. Chem. Phys.120 8906 |

[18] | Angulo J C, Antolín J and Sen K D 2008 Fisher-Shannon plane and statistical complexity of atoms Phys. Lett. A 372 670 |

[19] | López-Ruiz R, Mancini H L and Calbet X 1995 A statistical measure of complexity Phys. Lett. A 209 321 |

[20] | Catalan R G, Garay J and López-Ruiz R 2002 Features of the extension of a statistical measure of complexity to continuous systems Phys. Rev. E 66 011102 |

[21] | Anteneodo C and Plastino A R 1996 Some features of the López-Ruiz-Mancini-Calbet (LMC) statistical measure of complexity Phys. Lett. A 223 348 |

[22] | Dembo A, Cover T M and Thomas J A 1991 Information theoretic inequalities IEEE Trans. Inf. Theory37 1501 |

[23] | Guerrero A, Sánchez-Moreno P and Dehesa J S 2011 Upper bounds on quantum uncertainty products and complexity measures Phys. Rev. A 84 042105 |

[24] | Yamano T 2004 A statistical complexity measure with nonextensive entropy and quasi-multiplicativity J. Math. Phys.45 1974 |

[25] | Yamano T 2004 A statistical measure of complexity with nonextensive entropy Physica A 340 131 |

[26] | Romera E and Nagy A 2008 Fisher-Rényi entropy product and information plane Phys. Lett. A 372 6823 |

[27] | Antolín J, López-Rosa S and Angulo J C 2009 Renyi complexities and information planes: atomic structure in conjugated spaces Chem. Phys. Lett.474 233 |

[28] | Romera E, López-Ruiz R, Sañudo J and Nagy A 2009 Generalized statistical complexity and Fisher-Rényi entropy product in the H-atom Int. Rev. Phys.3 207 |

[29] | Toranzo I V, Sánchez-Moreno P, Rudnicki L and Dehesa J S 2017 One-parameter Fisher-Rényi complexity: notion and hydrogenic applications Entropy19 16 |

[30] | Pipek J and Varga I 1997 Statistical electron densities Int. J. Quantum Chem.64 85 |

[31] | López-Ruiz R, Nagy Á, Romera E and Sañudo J 2009 A generalized statistical complexity measure: applications to quantum systems J. Math. Phys.50 123528 |

[32] | López-Ruiz R 2005 Shannon information, LMC complexity and Rényi entropies: a straightforward approach Biophys. Chem.115 215 |

[33] | Sánchez-Moreno P, Angulo J C and Dehesa J S 2014 A generalized complexity measure based on Rényi entropy Eur. Phys. J. D 68 212 |

[34] | Cardoso T R and de Castro A S 2005 The blackbody radiation in a D-dimensional universes Rev. Bras. Ens. Fis.27 559 |

[35] | Ramos R and Boshi-Filho H 2009 Blackbody radiation with compact and non-compact extra dimensions in preparation (arXiv:0910.1561v2 [quant-ph]) |

[36] | Ramos R and Boschi-Filho H 2014 The size of compact extra dimensions from blackbody radiation laws Physica A 393 261 |

[37] | Alnes H, Ravndal F and Wehus I K 2007 Black-body radiation with extra dimensions J. Phys. A: Math. Theor.40 14309 |

[38] | García-García A M 2008 Finite-size corrections to the blackbody radiation laws Phys. Rev. A 78 023806 |

[39] | Lehoucq R 2011 Illuminating the blackbody Eur. J. Phys.32 1495 |

[40] | Stewart S M 2012 Blackbody radiation functions and polylogarithms J. Quant. Spectrosc. Radiat. Transfer113 232 |

[41] | Nozari K and Anvari S F 2012 Black body radiation in a model universe with large extra dimensions and quantum gravity effects in preparation (arXiv:1206:5631v1 [hep-th]) |

[42] | Zeng Q J, Cheng Z and Yuan J H 2012 Generalization of the radiation laws of a Kerr nonlinear blackbody Eur. Phys. J. D 66 50 |

[43] | Toranzo I V and Dehesa J S 2014 Entropy and complexity properties of the d-dimensional blackbody radiation Eur. Phys. J. D 68 316 |

[44] | Tsallis C, Sa Barreto F C and Loh E D 1995 Generalization of the Planck radiation law and application to the cosmic microwave background radiation Phys. Rev. E 52 1447 |

[45] | Ade P A R et al and BICEP2 Collaboration 2014 Detection of B-mode polarization at degree angular scales by BICEP2 Phys. Rev. Lett.112 241101 |

[46] | Maia A and Lima J A 1998 D-dimensional radiative plasma: a kinetic approach Class. Quantum Grav.15 2271 |

[47] | Martínez S, Pennini F, Plastino A and Tessone C J 2002 q-thermostatistics and the black-body radiation problem Physica A 309 85 |

[48] | Mather J C, Fixsen D J, Shafer R A, Mosier C and Wilkinson D T 1999 Calibrator design for the COBE far-infrared absolute spectrophotometer (FIRAS) Astrophys. J.512 51120 |

[49] | Mather J C et al 1994 Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument Astrophys. J.420 439 |

[50] | Bennett C L et al and WMAP Collaboration 2013 Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results Astrophys. J. Suppl.208 20 |

[51] | Ade P A R et al and Planck collaboration 2014 Planck 2013 results. XVI. Cosmological parameters Astron. Astrophys.571 A16 |

[52] | Dehesa J S, López-Rosa S, Martínez-Finkelshtein A and Yáñez R J 2010 Information theory of D-dimensional hydrogenic systems: application to circular and Rydberg states Int. J. Quantum Chem.110 1529 |

[53] | Acharyya M 2011 Pauli spin paramagnetism and electronic specific heat in generalised d-dimensions Commun. Theor. Phys.55 901 |

[54] | Brandon D, Saad N and Dong S H 2013 On some polynomial potentials in d-dimensions J. Math. Phys.54 082106 |

[55] | Krenn M, Huber M, Fickler R, Lapkiewicz R, Ramelow S and Zeilinger A 2014 Generation and confirmation of a (100×100)-dimensional entangled quantum system Proc. Natl Acad. Sci.111 6243 |

[56] | March N H and Nagy A 2012 Some model inhomogeneous electron liquid in D dimensions: relation between energy and chemical potential and a spatial generalisation of Kato’s nuclear cusp theorem Phys. Chem. Liq.50 266 |

[57] | Spengler C, Huber M, Gabriel A and Hiesmayr B C 2013 Examining the dimensionality of genuine multipartite entanglement Quantum Inf. Process.12 269 |

[58] | Rybin M V, Sinev I S, Samusev A K, Samusev K B, Yu T E, Kurdyukov D A, Golubev V G and Limonov M F 2013 Dimensionality effects on the optical diffraction from opal-based photonic structures Phys. Rev. B 87 125131 |

[59] | Sælen L, Nepstad R, Hansen J R and Madsen L B 2007 The N-dimensional Coulomb problem: stark effect in hyperparabolic and hyperspherical coordinates J. Phys. A: Math. Theor.40 1097 |

[60] | Weinberg S 1986 Physics in Higher Dimensions (Singapore: World Scientific) |

[61] | Herschbach D R, Avery J and Goscinski O 1993 Dimensional Scaling in Chemical Physics (Dordrecht: Kluwer) |

[62] | Dong S H 2011 Wave Equations in Higher Dimensions (Berlin: Springer) |

[63] | Dehesa J S, López-Rosa S and Manzano D 2012 Entropy and complexity analyses of D-dimensional quantum systems Statistical Complexity (Berlin: Springer) |

[64] | Hall M J W 1999 Universal geometric approach to uncertainty, entropy and information Phys. Rev. A 59 2602 |

[65] | Onicescu O 1966 Energie informationnelle C. R. Acad. Sci. Paris. Ser. 841 |

[66] | Shiner J S, Davison M and Landsberg P T 1999 Simple measure for complexity Phys. Rev. E 59 1459 |

[67] | Lutwak E, Yang D and Zhang G 2005 Cramér-Rao and moment-entropy inequalities for Renyi entropy and generalized fisher information IEEE Trans. Inf. Theor.51 473 |

[68] | Oikonomou T and Bagci G B 2009 A note on the definition of deformed exponential and logarithm functions J. Math. Phys.50 103301 |

[69] | Bagci G B and Oikonomou T 2016 Validity of the third law of thermodynamics for the Tsallis entropy Phys. Rev. E 93 022112 |

[70] | Olver F W J, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press) |

[71] | Barnes E W 1899 The Theory of the G-function Q. J. Math.31 264 |

[72] | Choi J and Srivastava H M 2011 The multiple Hurwitz Zeta function and the multiple Hurwitz-Euler eta function Taiwanese J. Math.15 501 |

[73] | Faessler A, Hodák R, Kovalenko S and Simkovic F 2017 Can one measure the cosmic neutrino background? Int. J. Mod. Phys. E 26 1740008 |

[74] | Gradshteyn I S and Ryzhik I M 2007 Table of Integrals, Series and Products (New York: Elsevier) |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.