×

zbMATH — the first resource for mathematics

Heisenberg-like uncertainty measures for \(D\)-dimensional hydrogenic systems at large \(D\). (English) Zbl 1344.81113
Summary: The radial expectation values of the probability density of a quantum system in position and momentum spaces allow one to describe numerous physical quantities of the system as well as to find generalized Heisenberg-like uncertainty relations and to bound entropic uncertainty measures. It is known that the position and momentum expectation values of the main prototype of the \(D\)-dimensional Coulomb systems, the \(D\)-dimensional hydrogenic system, can be expressed in terms of some generalized hypergeometric functions of the type \({}_{p+1}F_{p}(z)\) evaluated at unity with \(p = 2\) and \(p = 3\), respectively. In this work we determine the position and momentum expectation values in the limit of large \(D\) for all hydrogenic states from ground to very excited (Rydberg) ones in terms of the spatial dimensionality and the hyperquantum numbers of the state under consideration. This is done by means of two different approaches to calculate the leading term of the special functions \({}_3 F_2(1)\) and \({}_5 F_4(1)\) involved in the large \(D\) limit of the position and momentum quantities. Then, these quantities are used to obtain the generalized Heisenberg-like and logarithmic uncertainty relations, and some upper and lower bounds to the entropic uncertainty measures (Shannon, Rényi, Tsallis) of the \(D\)-dimensional hydrogenic system.
©2016 American Institute of Physics

MSC:
81S05 Commutation relations and statistics as related to quantum mechanics (general)
81P05 General and philosophical questions in quantum theory
81V45 Atomic physics
94A17 Measures of information, entropy
33C20 Generalized hypergeometric series, \({}_pF_q\)
Software:
DLMF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Witten, E., Phys. Today, 33, 7, 38-43, (1980)
[2] Yaffe, L. G., Rev. Mod. Phys., 54, 407, (1982)
[3] Herschbach, D. R.; Avery, J.; Goscinski, O., Dimensional Scaling in Chemical Physics, (1993), Kluwer Academic Publishers: Kluwer Academic Publishers, London
[4] Tsipis, C. T.; Popov, V. S.; Herschbach, D. R.; Avery, J. S., New Methods in Quantum Theory, (1996), Kluwer Academic Publishers: Kluwer Academic Publishers, Dordrecht
[5] Svidzinsky, A.; Chen, G.; Chin, S.; Kim, M.; Ma, D.; Murawski, R.; Sergeev, A.; Scully, M.; Herschbach, D., Int. Rev. Phys. Chem., 27, 665-723, (2008)
[6] Chatterjee, A., Phys. Rep., 186, 249, (1990)
[7] Avery, J., Hyperspherical Harmonics and Generalized Sturmians, (2000), Kluwer: Kluwer, Dordrecht · Zbl 0998.81513
[8] Dong, S. H., Wave Equations in Higher Dimensions, (2011), Springer: Springer, New York
[9] Krenn, M.; Huber, M.; Fickler, R.; Lapkiewicz, R.; Ramelowa, S.; Zeilinger, A., Proc. Natl. Acad. Sci. U. S. A., 111, 6243-6247, (2014)
[10] Bellomo, G.; Plastino, A. R.; Plastino, A., Int. J. Quantum Inf., 13, 6, 1550039, (2015) · Zbl 1320.81025
[11] Crann, J.; Kribs, D. W.; Levene, R. H.; Todorov, I. G., J. Math. Phys., 57, 015208, (2016) · Zbl 1335.81057
[12] Bender, C. M.; Boettcher, S.; Mead, L. R., J. Math. Phys., 5, 368, (1994) · Zbl 0797.60058
[13] Bender, C. M.; Boettcher, S.; Moshe, M., J. Math. Phys., 5, 4941, (1994) · Zbl 0813.60066
[14] Beldjenna, A.; Rudnick, J.; Gaspari, G., J. Phys. A, 24, 2131, (1991)
[15] Bender, C. M.; Milton, K. A., Phys. Rev. D, 50, 6547, (1994)
[16] Yaffe, L. G., Phys. Today, 36, 8, 50, (1983)
[17] Herschbach, D. R., Faraday Discuss. Chem. Soc., 84, 465, (1987)
[18] Herschbach, D. R., Int. J. Quantum Chem., 57, 295, (1996)
[19] Herschbach, D. R., Annu. Rev. Phys. Chem., 51, 1-39, (2000)
[20] Herschbach, D. R., J. Chem. Phys., 84, 838, (1986)
[21] Pasternack, S., Proc. Natl. Acad. Sci. U. S. A., 23, 91, (1938) · JFM 63.0321.04
[22] Ray, A.; Mahata, K.; Ray, P. P., Am. J. Phys., 56, 462, (1988)
[23] Drake, G. W. F.; Swainson, R. A., Phys. Rev. A, 42, 1123, (1990)
[24] Andrae, D., J. Phys. B: At., Mol. Opt. Phys., 30, 4435, (1997)
[25] Tarasov, V. F., Int. J. Mod. Phys. B, 18, 3177-3184, (2004) · Zbl 1158.81331
[26] Guerrero, A.; Sanchez-Moreno, P.; Dehesa, J. S., Phys. Rev. A, 84, 042105, (2011)
[27] Hey, J. D., Am. J. Phys., 61, 28, (1993)
[28] van Assche, W.; Yáñez, R. J.; González-Férez, R.; Dehesa, J. S., J. Math. Phys., 41, 6600, (2000) · Zbl 0977.33006
[29] Dehesa, J. S.; López-Rosa, S.; Sánchez-Moreno, P.; Yáñez, R. J., Int. J. Appl. Math. Stat., 26, 150-162, (2012)
[30] Dehesa, J. S.; López-Rosa, S.; Martínez-Finkelshtein, A.; Yáñez, R. J., Int. J. Quantum Chem., 110, 1529-1548, (2010)
[31] Zozor, S.; Portesi, M.; Sanchez-Moreno, P.; Dehesa, J. S., Phys. Rev. A, 83, 052107, (2011)
[32] Toranzo, I. V.; López-Rosa, S.; Esquivel, R. O.; Dehesa, J. S., J. Phys. A: Math. Theor., 49, 025301, (2016) · Zbl 1342.81079
[33] Aptekarev, A. I.; Dehesa, J. S.; Martínez-Finkelshtein, A.; Yáñez, R. J., J. Phys. A: Math. Theor., 43, 145204, (2010) · Zbl 1188.81183
[34] Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W., NIST Handbook of Mathematical Functions, (2010), Cambridge University Press: Cambridge University Press, New York · Zbl 1198.00002
[35] Nieto, M. M., Am. J. Phys., 47, 1067, (1979)
[36] Yanez, R. J.; van Assche, W.; Dehesa, J. S., Phys. Rev. A, 50, 3065, (1994)
[37] Aquilanti, V.; Cavalli, S.; Coletti, C., Chem. Phys., 214, 1-13, (1997)
[38] Szmytkowski, R., Ann. Phys., 524, 6-7, 345-352, (2012) · Zbl 1254.81039
[39] Delbourgo, R.; Elliott, D., J. Math. Phys., 50, 062107, (2009) · Zbl 1216.81177
[40] Knottnerus, U. J., Approximation Formulae for Generalized Hypergeometric Functions for Large Values of the Parameters, (1960), J. B. Wolters: J. B. Wolters, Groningen · Zbl 0090.04501
[41] Luke, Y. L., The Special Functions and their Approximations, 2, (1969), Academic Press: Academic Press, New York
[42] Saff, E. B.; Totik, V., Logarithmic Potentials with External Fields, 316, (1997), Springer-Verlak: Springer-Verlak, Berlin · Zbl 0881.31001
[43] Kennard, E. H., Z. Phys., 44, 326, (1927)
[44] Beckner, W., Proc. Am. Math. Soc., 123, 1897-1905, (1995)
[45] Sánchez-Moreno, P.; González-Férez, R.; Dehesa, J. S., New J. Phys., 8, 330, (2006)
[46] Toranzo, I. V.; Dehesa, J. S., EPL, 113, 48003, (2016)
[47] López-Rosa, S.; Toranzo, I. V.; Sánchez-Moreno, P.; Dehesa, J. S., J. Math. Phys., 54, 052109, (2013) · Zbl 1282.81054
[48] Aptekarev, A. I.; Dehesa, J. S.; Sánchez-Moreno, P.; Tulyakov, D. N., Contemp. Math., 578, 19-29, (2012) · Zbl 1318.94027
[49] Aptekarev, A. I.; Tulyakov, D. N.; Toranzo, I. V.; Dehesa, J. S., Eur. Phys. J. B, 89, 85, (2016)
[50] Shannon, C. E., Bell Syst. Tech. J., 27, 379, (1948) · Zbl 1154.94303
[51] Rényi, A., Probability Theory, (1970), Academy Kiado: Academy Kiado, Budapest · Zbl 0206.18002
[52] Tsallis, C., J. Stat. Phys., 52, 479, (1988) · Zbl 1082.82501
[53] López-Rosa, S.; Angulo, J. C.; Dehesa, J. S.; Yáñez, R. J., Physica A, 387, 2243-2255, (2008), 10.1016/j.physa.2007.12.005; López-Rosa, S.; Angulo, J. C.; Dehesa, J. S.; Yáñez, R. J., Physica A, 387, 2243-2255, (2008), 10.1016/j.physa.2008.04.005;
[54] Dehesa, J. S.; Galvez, F. J., Phys. Rev. A, 37, 3634, (1988)
[55] Dehesa, J. S.; López-Rosa, S.; Manzano, D.; Sen, K. D., Statistical Complexities: Application to Electronic Structure, (2012), Springer: Springer, Berlin
[56] Spanier, J.; Oldham, K. B., An Atlas of Functions, (1987), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0618.65007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.