×

Extension of a hybrid thermal LBE scheme for large-eddy simulations of turbulent convective flows. (English) Zbl 1177.76338

Summary: Following the work of P. Lallemand and L.-S. Luo [Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys Rev E 68, 036706 (2003)] we validate, apply and extend the hybrid thermal lattice Boltzmann scheme (HTLBE) by a large-eddy approach to simulate turbulent convective flows. For the mass and momentum equations, a multiple-relaxation-time LBE scheme is used while the heat equation is solved numerically by a finite difference scheme. We extend the hybrid model by a Smagorinsky subgrid scale model for both the fluid flow and the heat flux. Validation studies are presented for laminar and turbulent natural convection in a cavity at various Rayleigh numbers up to \(5 \times 10^{10}\) for \(Pr = 0.71\) using a serial code in 2D and a parallel code in 3D, respectively. Correlations of the Nusselt number are discussed and compared to benchmark data. As an application we simulated forced convection in a building with inner courtyard at \(Re = 50 000\).

MSC:

76M28 Particle methods and lattice-gas methods
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alexander CG, Chen H, Kandasamy S, Shock A, Govindappa SR. Simulations of engineering thermal turbulent flows using a lattice Boltzmann based algorithm. In: ASME PVP, Proceedings of the 3rd International Symposium on Comp. Techn. for fluid/thermal/chemical/stress systems with industrical applications, 2001.; Alexander CG, Chen H, Kandasamy S, Shock A, Govindappa SR. Simulations of engineering thermal turbulent flows using a lattice Boltzmann based algorithm. In: ASME PVP, Proceedings of the 3rd International Symposium on Comp. Techn. for fluid/thermal/chemical/stress systems with industrical applications, 2001.
[2] Bejan, A., Convection heat transfer (1995), John Wiley
[3] Bhatnagar, P.; Gross, E. P.; Krook, M. K., A model for collision processes in gases, Phys Rev, 94, 3, 511-525 (1954) · Zbl 0055.23609
[4] Breuer M. Direkte numerische simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Professorial dissertation, FAU Erlangen-Nürnberg, 2001.; Breuer M. Direkte numerische simulation und Large-Eddy Simulation turbulenter Strömungen auf Hochleistungsrechnern. Professorial dissertation, FAU Erlangen-Nürnberg, 2001.
[5] Deardorff, J. W., A numerical study of three-dimensional turbulent channel flow at large reynolds numbers, J Fluid Mech, 41, 2, 453-480 (1970) · Zbl 0191.25503
[6] De Vahl Davis, G.; Jones, I. P., Natural convection in a square cavity: a comparison exercise, Int J Num Methods Fluids, 3, 227-248 (1983) · Zbl 0538.76076
[7] De Vahl Davis, G., Natural convection of air in a square cavity: a bench mark numerical solution, Int J Numer Methods Fluids, 3, 249-264 (1983) · Zbl 0538.76075
[8] Eggels, J.; Somers, J., Numerical simulation of free convective flow using the lattice Boltzmann scheme, Int J Heat Fluid Flow, 16, 357-364 (1995)
[9] Eggels, J. G.M., Direct and large-eddy simulations of turbulent fluid flow using the lattice Boltzmann scheme, Int J Heat Fluid Flow, 17, 307 (1996)
[10] Ginzburg, I.; Adler, P., Boundary flow condition analysis for the three-dimensional lattice Boltzmann model, J Phys II France, 4, 191-214 (1994)
[11] Ginzburg, I.; d’Humières, D., Local second order boundary methods for lattice Boltzmann models, J Stat Phys, 84, 927-971 (1996) · Zbl 1081.82617
[12] Henkes, R. A.W. M.; Hoogendoorn, C. J., Comparison exercise for computations of turbulent natural convection in enclosures, J Numer Heat Transfer B, 28, 59-78 (1995)
[13] Hirsch, C., Numerical computation of internal and external flows, vol. 1 (1988), John Wiley
[14] Hou, S.; Sterling, J.; Chen, S.; Doolen, G. D., A lattice-Boltzmann subgrid model for high Reynolds number flows, Fields Inst Commun, 6, 151-165 (1996) · Zbl 0923.76275
[15] Quian, Y. H.; d’Humières, D.; Lallemand, P., Lattice BGK models for Navier-Stokes equations, Europhys Lett, 17, 6, 479-484 (1992) · Zbl 1116.76419
[16] d’Humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil Trans R Soc Lond A, 360, 437-451 (2002) · Zbl 1001.76081
[17] Krafczyk, M.; Tölke, J.; Luo, L.-S., Large-eddy simulations with a multiple-relaxation-time LBE model, Int J Modern Phys B, 17, 1,2, 33-39 (2003)
[18] Lallemand P. Private communications.; Lallemand P. Private communications.
[19] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys Rev E, 68, 6, 6546-6562 (2000)
[20] Lallemand, P.; Luo, L.-S., Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions, Phys Rev E, 68, 036706 (2003)
[21] Le Quéré, P., Accurate solutions to the square thermally driven cavity at high Rayleigh number, Comput Fluids, 20, 1, 29-41 (1991) · Zbl 0731.76054
[22] Mezrhab, A.; Bouzidi, M.; Lallemand, P., Hybrid lattice-Boltzmann finite-difference simulation of convective flows, Comput Fluids, 33, 623-641 (2004) · Zbl 1071.76044
[23] Sagaut, P., Large eddy simulation for incompressible flows (2001), Springer Verlag · Zbl 0964.76002
[24] Schlichting, H.; Gersten, K., Boundary layer theory (1996), Springer Verlag
[25] Schumann, U., Subgrid-scale model for finite-difference simulations of turbulent flows in plane channels and annuli, J Comput Phys., 18, 376-404 (1975) · Zbl 0403.76049
[26] Smagorinsky, J., General circulation experiments with the primitive equations. I, The basic experiment, Mon Weather Rev, 91, 99-165 (1963)
[27] van Treeck C. Gebäudemodell-basierte Simulation von Raumluftströmungen. PhD thesis, Lehrstuhl für Bauinformatik, TU Munich, 2004.; van Treeck C. Gebäudemodell-basierte Simulation von Raumluftströmungen. PhD thesis, Lehrstuhl für Bauinformatik, TU Munich, 2004.
[28] Teixeira, C. M., Incorporating turbulence models into the lattice-Boltzmann method, Int J Modern Phys C, 9, 8, 1159-1175 (1998)
[29] Tric, E.; Labrosse, G.; Betrouni, M., A first incursion into the 3D structure of natural convection of air in a differentially heated cubic cavity, Int J Heat Mass Transfer, 43, 4043-4056 (2000) · Zbl 0987.76074
[30] Vahala, G.; Pavlo, P.; Vahala, L.; Martys, N. S., Thermal lattice-Boltzmann models (TLBM) for compressible flows, Int J Modern Phys C, 9, 8, 1247-1261 (1998)
[31] Wenisch P, van Treeck C, Rank E. Interactive indoor air flow analysis using high performance computing and virtual reality techniques. In: Proc. Roomvent 2004, Portugal, 2004.; Wenisch P, van Treeck C, Rank E. Interactive indoor air flow analysis using high performance computing and virtual reality techniques. In: Proc. Roomvent 2004, Portugal, 2004.
[32] Werner, H.; Wengle, H., Large eddy simulation of turbulent flow over and around a cube in a plate channel, (Schumann; etal., 8th Symposium on Turb. Shear Flows (1993), Springer Verlag: Springer Verlag Berlin) · Zbl 0875.76487
[33] Yuan, X.; Moser, A.; Suter, P., Wall functions for numerical simulation of turbulent natural convection along vertical planes, Int J Heat Mass Transfer, 36, 18, 4477-4485 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.