zbMATH — the first resource for mathematics

An automated workflow for the biomechanical simulation of a tibia with implant using computed tomography and the finite element method. (English) Zbl 1443.92052
Summary: In this study, a fully automated workflow is presented for the biomechanical simulation of bone-implant systems using the example of a fractured tibia. The workflow is based on routinely acquired tomographic data and consists of an automatic segmentation and material assignment, followed by a mesh generation step and, finally, a mechanical simulation using the finite element method (FEM). Because of the high computational costs of the FEM simulations, an adaptive mesh refinement scheme was developed that limits the highest resolution to materials that can take large amounts of mechanical stress. The scheme was analyzed and it was shown that it has no relevant impact on the simulation precision. Thus, a fully automatic, reliable and computationally feasible method to simulate mechanical properties of bone-implant systems was presented, which can be used for numerous applications, ranging from the design of patient-specific implants to surgery preparation and post-surgery implant verification.
92C10 Biomechanics
92C50 Medical applications (general)
92C55 Biomedical imaging and signal processing
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
Full Text: DOI
[1] Giannoudis, P.; Einhorn, T.; Marsh, D., Fracture healing: The diamond concept. Injury, Int. J. Care Injured, 38S4, S3-S4 (2007)
[2] Roarty, C. M.; Grosland, N. M., Adaptive meshing technique applied to an orthopaedic finite element contact problem, Iowa Orthop. J., 24, 21-29 (2004)
[3] Huiskes, R., A survey of finite element analysis in orthopedic biomechanics: the first decade, J. Biomechanics, 16, 6, 385-409 (1983)
[4] Prendergast, P. J., Finite element models in tissue mechanics and orthopaedic implant design, Clin. Biomech., 12, 6, 343-366 (1997)
[5] Huiskes, R.; Verdonschot, N.; Nivbrant, B., Migration, stem shape, and surface finish in cemented total hip arthroplasty, Clin. Orthop. Related Res., 355, 103-112 (1998)
[6] Namba, R. S.; Keyak, J. H.; Kim, A. S.; Vu, L. P.; Skinner, H. B., Cementless implant composition and femoral stress. a finite element analysis, Clin. Orthop. Related Res., 347, 261-267 (1998)
[7] Pedersen, D. R.; Brown, T. D.; Maxian, T.a.; Callaghan, J. J., Temporal and spatial distributions of directional counterface motion at the acetabular bearing surface in total hip arthroplasty, Iowa Orthop. J., 18, 43-53 (1998)
[8] Scifert, C. F.; Brown, T. D.; Lipman, J. D., Finite element analysis of a novel design approach to resisting total hip dislocation, Clin. Biomech., 14, 10, 697-703 (1999)
[9] Miyoshi, S.; Takahashi, T.; Ohtani, M.; Yamamoto, H.; Kameyama, K., Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model, Clin. Biomech., 17, 7, 521-525 (2002)
[10] Walker, P. S.; Nunamaker, D.; Huiskes, R.; Parchinski, T.; Greene, D., A new approach to the fixation of a metacarpophalangeal joint prosthesis, Eng. Med., 12, 3, 135-140 (1983)
[11] Couteau, B.; Mansat, P.; Estivalèzes, E.; Darmana, R.; Mansat, M.; Egan, J., Finite element analysis of the mechanical behavior of a scapula implanted with a glenoid prosthesis, Clin. Biomech., 16, 7, 566-575 (2001)
[12] Ulrich, D.; van Rietbergen, B.; Weinans, H.; Rüegsegger, P., Finite element analysis of trabecular bone structure: a comparison of image-based meshing techniques, J. Biomech., 31, 12, 1187-1192 (1998)
[13] Rhee, Y.; Hur, J.-H.; Won, Y.-Y.; Lim, S.-K.; Beak, M.-H.; Cui, W.-Q.; Kim, K.-G.; Kim, Y. E., Assessment of bone quality using finite element analysis based upon micro-CT images, Clin. Orthop. Surg., 1, 1, 40-47 (2009)
[14] Bekas, C.; Curioni, A.; Arbenz, P.; Flaig, C.; Van Lenthe, G.; Müller, R.; Wirth, A., Extreme scalability challenges in micro-finite element simulations of human bone, Concurr. Comput. Pract. Exp., 22, 2282-2296 (2010)
[16] Müller-Hannemann, M., (Recent Advances in Hexahedral Mesh Generation. Recent Advances in Hexahedral Mesh Generation, Progress in Engineering Computational Technology (2004), Saxe-Coburg Publications: Saxe-Coburg Publications Stirlingshire, UK), 19-42, (Chapter 2)
[17] Lorensen, W. E.; Cline, H. E., Marching cubes: A high resolution 3D surface construction algorithm, (Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques. Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’87 (1987), ACM Press: ACM Press New York, New York, USA), 163-169
[18] Zhang, Y.; Bajaj, C.; Sohn, B.-S., 3D finite element meshing from imaging data, Comput. Methods Appl. Mech. Engrg., 194, 48-49, 5083-5106 (2005) · Zbl 1093.65019
[19] Ito, Y.; Shih, A. M.; Soni, B. K., Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates, Internat. J. Numer. Methods Engrg., 77, 1809-1833 (2008) · Zbl 1160.74425
[20] Taddei, F.; Cristofolini, L.; Martelli, S.; Gill, H. S.; Viceconti, M., Subject-specific finite element models of long bones: An in vitro evaluation of the overall accuracy, J. Biomech., 39, 13, 2457-2467 (2006)
[21] Ruess, M.; Tal, D.; Trabelsi, N.; Yosibash, Z.; Rank, E., The finite cell method for bone simulations: Verification and validation, Biomech. Model. Mechanobiol., 11, 3-4, 425-437 (2012)
[22] Ruedi, T.; Buckley, R.; Moran, C., AO Principles of Fracture Management, No. Bd. 2 (2007), Thieme
[23] Gallagher, N.; Wise, G., A theoretical analysis of the properties of the median filter, IEEE Trans. Acoust. Speech Signal Process., 29, 6, 1136-1141 (1981)
[24] Serra, J., Image Analysis and Mathematical Morphology (1982), Academia Press: Academia Press London · Zbl 0565.92001
[25] Lu, J., Contrast enhancement of medical images using multiscale edge representation, Opt. Eng., 33, 7, 2151 (1994)
[26] Weickert, J., Anisotropic Diffusion in Image Processing (2005), Teubner
[27] Mäntylä, M., An Introduction to Solid Modeling (1987), Computer Science Press, Inc.: Computer Science Press, Inc. New York, NY, USA
[28] Kremer, M.; Bommes, D.; Kobbelt, L., Openvolumemesh — a versatile index-based data structure for 3d polytopal complexes, (Jiao, X.; Weill, J.-C., Proceedings of the 21st International Meshing Roundtable (2012), Springer-Verlag: Springer-Verlag Berlin), 531-548
[29] Möbius, J.; Kobbelt, L., (OpenFlipper: An Open Source Geometry Processing and Rendering Framework. OpenFlipper: An Open Source Geometry Processing and Rendering Framework, Lecture Notes in Computer Science, vol. 6920 (2012), Springer: Springer Berlin/Heidelberg) · Zbl 1352.65072
[30] Bornemann, F., Adaptive multivlevel methods in three space dimensions, Internat. J. Numer. Methods Engrg., 1, August 1992, 1-25 (1993)
[31] Bangerth, W.; Hartmann, R.; Kanschat, G., deal.II — a general purpose object oriented finite element library, ACM Trans. Math. Software, 33, 24 (2007), URL http://doi.acm.org/10.1145/1268776.1268779 · Zbl 1365.65248
[32] Bangerth, W.; Kayser-Herold, O., Data structures and requirements for hp finite element software, ACM Trans. Math. Softw., 36 (2009), 4/1-31 · Zbl 1364.65237
[33] Solin, P.; Cervenya, J.; Dolezelb, I., Arbitrary-level hanging nodes and automatic adaptivity in the hp-fem, Math. Comput. Simulation, 77, 1, 117-132 (2008) · Zbl 1135.65394
[34] Ainsworth, M.; Rankin, R., Fully computable error bounds for discontinuous galerkin finite element approximations on meshes with an arbitrary number of levels of hanging nodes, SIAM J. Numer. Anal., 47, 6, 4112-4141 (2010) · Zbl 1208.65155
[35] Hvid, I.; Bentzen, S.; Linde, F.; Mosekilde, L.; Pongsoipetch, B., X-Ray quantitative computed tomography: the relations to physical properties of proximal tibial trabecular bone specimens, J. Biomech., 22, 8/9, 837-844 (1989)
[36] Rho, J.; Hobatho, M.; Ashman, R., Relations of mechanical properties to density and CT numbers in human bone, Med. Eng. Phys., 17, 5, 347-355 (1995)
[37] Zannoni, C.; Mantovani, R.; Viceconti, M., Material properties assignment to finite element models of bone structures: a new method, Med. Eng. Phys., 20, 735-740 (1998)
[38] Taddei, F.; Pancanti, A.; Viceconti, M., An improved method for the automatic mapping of computed tomography numbers onto finite element models, Med. Eng. Phys., 26, 61-69 (2004)
[39] Helgason, B.; Perilli, E.; Schileo, E.; Taddei, F.; Brynjolfsson, S.; Viceconti, M., Mathematical relationships between bone density and mechanical properties: A literature review, Clin. Biomech., 23, 135-146 (2008)
[40] Cattaneo, P.; Dalstra, M.; Frich, L., A three-dimensional finite element model from computed tomography data: a semi-automated method, Proc. Inst. Mech. Eng. Part H, 215, 2, 203-213 (2001)
[41] Chen, E.; Novakofski, J.; Jenkins, W.; O’Brien, W., Youngs modulus measurements of soft tissues with application to elasticity imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 43, 1, 191-194 (1996)
[42] Timoshenko, S., Strength of Materials (1976), RE Krieger Pub. Co.: RE Krieger Pub. Co. Huntington · JFM 66.1364.04
[43] Riviere, B., (Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Frontiers in Applied Mathematics (2008), Society for Industrial and Applied Mathematics (SIAM)) · Zbl 1153.65112
[45] Bangerth, W.; Hartmann, R.; Kanschat, G., — a general purpose object oriented finite element library, ACM Trans. Math. Softw., 33, 4, 24/1-24/27 (2007) · Zbl 1365.65248
[46] Meister, A., Numerik Linearer Gleichungssysteme (2007), Vieweg-Verlag: Vieweg-Verlag Wiesbaden
[47] Braess, D., Finite Elemente (2003), Springer-Verlag: Springer-Verlag Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.