Timofeeva, Yulia; Coombes, Stephen; Michieletto, Davide Gap junctions, dendrites and resonances: a recipe for tuning network dynamics. (English) Zbl 1291.92050 J. Math. Neurosci. 3, Paper No. 15, 27 p. (2013). Summary: Gap junctions, also referred to as electrical synapses, are expressed along the entire central nervous system and are important in mediating various brain rhythms in both normal and pathological states. These connections can form between the dendritic trees of individual cells. Many dendrites express membrane channels that confer on them a form of sub-threshold resonant dynamics. To obtain insight into the modulatory role of gap junctions in tuning networks of resonant dendritic trees, we generalise the “sum-over-trips” formalism for calculating the response function of a single branching dendrite to a gap junctionally coupled network. Each cell in the network is modelled by a soma connected to an arbitrary structure of dendrites with resonant membrane. The network is treated as a single extended tree structure with dendro-dendritic gap junction coupling. We present the generalised “sum-over-trips” rules for constructing the network response function in terms of a set of coefficients defined at special branching, somatic and gap-junctional nodes. Applying this framework to a two-cell network, we construct compact closed form solutions for the network response function in the Laplace (frequency) domain and study how a preferred frequency in each soma depends on the location and strength of the gap junction. Cited in 3 Documents MSC: 92C20 Neural biology Keywords:dendrites; gap junctions; resonant membrane; sum-over-trips; network dynamics PDF BibTeX XML Cite \textit{Y. Timofeeva} et al., J. Math. Neurosci. 3, Paper No. 15, 27 p. (2013; Zbl 1291.92050) Full Text: DOI References: [1] doi:10.1038/382363a0 · doi:10.1038/382363a0 [2] doi:10.1088/0954-898X/13/3/304 · doi:10.1088/0954-898X/13/3/304 [3] doi:10.1016/j.bbamem.2003.10.023 · doi:10.1016/j.bbamem.2003.10.023 [4] doi:10.1016/S0896-6273(04)00043-1 · doi:10.1016/S0896-6273(04)00043-1 [5] doi:10.1016/S0165-0173(99)00084-3 · doi:10.1016/S0165-0173(99)00084-3 [6] doi:10.1152/jn.00662.2005 · doi:10.1152/jn.00662.2005 [7] doi:10.1007/BF00196452 · Zbl 0743.92010 · doi:10.1007/BF00196452 [8] doi:10.1016/0378-4371(92)90474-5 · doi:10.1016/0378-4371(92)90474-5 [9] doi:10.1007/s00422-007-0161-5 · Zbl 1122.92007 · doi:10.1007/s00422-007-0161-5 [10] doi:10.1085/jgp.55.4.497 · doi:10.1085/jgp.55.4.497 [11] doi:10.1137/110847354 · Zbl 1235.92015 · doi:10.1137/110847354 [12] doi:10.1007/s00285-012-0635-5 · Zbl 1402.92117 · doi:10.1007/s00285-012-0635-5 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.