×

zbMATH — the first resource for mathematics

Schrödinger systems with quadratic interactions. (English) Zbl 1437.35276
Let \(\lambda_1,\ \lambda_2, \ \mu_1, \mu_2\) and \(\beta\) be positive constants, and \(N\in [2,5]\). The following type of Schrödinger system is studied in this paper: \[ (P): \ -\Delta u + \lambda_1 u = \mu_1 |u|u + \beta uv, \ -\Delta v + \lambda_2 v = \mu_2 |v|v + \frac{\beta}{2}u^2, \ x\in \mathbb{R}^N. \] Under some suitable conditions on \(\lambda_1,\ \lambda_2, \ \mu_1, \mu_2\) and \(\beta\), by variational methods, the existence of a positive ground state solution and the nonexistence of positive vector solutions are proved. Also the asymptotic behavior of ground state solutions is discussed for both \(\beta \rightarrow +\infty\) and \(\beta \rightarrow 0\). Moreover, since the associated variational functional is only partially symmetric (it is symmetric only with respect to the first component \(u\) but not with respect to \(v\)), the usual symmetric critical point theorem of minimax type cannot be applied directly. The authors develop some new techniques for treating these kind of variational problems, upon which multiple bound state vector solutions are obtained.
MSC:
35J57 Boundary value problems for second-order elliptic systems
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35J50 Variational methods for elliptic systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alexander, B.; Yuri, K., Solitons due to second harmonic generation, Phys. Lett. A, 197, 407-412 (1995) · Zbl 1020.35512
[2] Ambrosetti, A.; Cerami, G.; Ruiz, D., Solitons of linearly coupled systems of semilinear non-autonomous equations on Rn, J. Funct. Anal., 254, 2816-2845 (2008) · Zbl 1148.35080
[3] Ambrosetti, A.; Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. London Math. Soc., 75, 67-82 (2007) · Zbl 1130.34014
[4] Bang, O.; Kivshar, Y.-S.; Buryak, A.-V.; Rossi, A.-D.; Trillo, S., Two-dimensional solitary waves in media with quadratic and cubic nonlinearity, Phys. Rev. E, 58, 5057-5069 (1998)
[5] Bartsch, T.; Wang, Z.-Q., Note on ground states of nonlinear Schrödinger systems, J. Partial Differential Equations, 19, 200-207 (2006) · Zbl 1104.35048
[6] Bartsch, T.; Wang, Z.-Q.; Wei, J.-C., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2, 353-367 (2007) · Zbl 1153.35390
[7] Berestycki, H.; Lions, P.-L., Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., 82, 313-345 (1983) · Zbl 0533.35029
[8] Buryak, A. V.; Di Trapani, P.; Skryabin, D. V.; Trillo, S., Optical solitons due to quadratic nonlinearities: From basic physics to futuristic applications, Phys. Rep., 370, 63-235 (2002) · Zbl 0998.78009
[9] Colin, M.; Colin, T., On a quasi-linear Zakharov system describing laser-plasma interactions, Differential Integral Equations, 17, 297-330 (2004) · Zbl 1174.35528
[10] Colin, M.; Colin, T.; Ohta, M., Stability of solitary waves for a system of nonlinear Schrödinger equations with three wave interaction, Ann. Inst. H. Poincare Anal. Non Lineaire, 26, 2211-2226 (2009) · Zbl 1180.35478
[11] Colin, M.; Ohta, M., Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. H. Poincare Anal. Non Lineaire, 23, 753-764 (2006) · Zbl 1104.35050
[12] Dancer, E. N.; Wei, J. C.; Weth, T., A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 953-969 (2010) · Zbl 1191.35121
[13] Hayashi, N.; Ozawa, T.; Tanaka, K., On a system of nonlinear Schrödinger equations with quadratic interaction, Ann. Inst. H. Poincare Anal. Non Lineaire, 30, 661-690 (2013) · Zbl 1291.35347
[14] Kwong, M.-K., Uniqueness of positive solutions of Δu−u+up=0 in Rn, Arch. Ration. Mech. Anal., 105, 243-266 (1989) · Zbl 0676.35032
[15] Liu, Z.; Wang, Z.-Q., Multiple bound states of nonlinear Schrödinger systems, Comm. Math. Phys., 282, 721-731 (2008) · Zbl 1156.35093
[16] Liu, Z.; Wang, Z.-Q., Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10, 175-193 (2010) · Zbl 1198.35067
[17] Liu, C.; Zheng, Y., On soliton solutions to a class of Schrödinger-KdV systems, Proc. Amer. Math. Soc., 141, 3477-3484 (2013) · Zbl 1294.35125
[18] Pomponio, A., Ground states for a system of nonlinear Schrödinger equations with three wave interaction, J. Math. Phys., 51, 20, 093513 (2010) · Zbl 1309.81085
[19] Sato, Y.; Wang, Z.-Q., On the multiple existence of semi-positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 1-22 (2013) · Zbl 06154080
[20] Sirakov, B., Least energy solitary waves for a system of nonlinear Schrödinger equations in Rn, Comm. Math. Phys., 271, 199-221 (2007) · Zbl 1147.35098
[21] Tian, R.; Wang, Z.-Q., Multiple solitary wave solutions of nonlinear Schrödinger systems, Topol. Methods Nonlinear Anal., 37, 203-223 (2011) · Zbl 1255.35101
[22] Tian, R.; Zhang, Z., Existence and bifurcation of solutions for a double coupled system of Schrödinger equations, Sci. China Math., 58, 1607-1620 (2015) · Zbl 1326.35133
[23] Willem, M., Minimax Theorems, 24 (1996) · Zbl 0856.49001
[24] Yew, A. C., Multipulses of nonlinearly coupled Schrödinger equations, J. Differential Equations, 173, 92-137 (2001) · Zbl 1021.34036
[25] Yew, A. C.; Champneys, A. R.; Mckenna, P. J., Multiple solitary waves due to second-harmonic generation in quadratic media, J. Nonlinear Sci., 9, 33-52 (1999) · Zbl 0923.35169
[26] Zhao, L.; Zhao, F.; Shi, J., Higher dimensional solitary waves generated by second-harmonic generation in quadratic media, Calc. Var. Partial Differential Equations, 54, 2657-2691 (2015) · Zbl 1332.35345
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.