×

zbMATH — the first resource for mathematics

Multiple solutions for the coercive semilinear elliptic equations. (English) Zbl 1436.35195
Summary: In this paper we study the semilinear elliptic equations \[\begin{cases} - \Delta u = f(x,u), & \quad x \in \Omega, \\ u = 0, & \quad x \in \partial \Omega, \end{cases}\] where \(\Omega \subset \mathbb{R}^N\) is a smooth bounded domain. By using the minimax methods, bifurcation methods, Conley index theory and Morse theory, we obtain six nontrivial solutions for the equations with coercive nonlinearities.
MSC:
35J91 Semilinear elliptic equations with Laplacian, bi-Laplacian or poly-Laplacian
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Badiale, M.; Serra, E., Semilinear Elliptic Equations for Beginners (2011), Springer: Springer Berlin · Zbl 1214.35025
[2] Bartsch, T.; Li, S., Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal., 28, 419-441 (1997) · Zbl 0872.58018
[3] Benci, V., A new approach to the Morse-Conley theory and some applications, Ann. Mat. Pura Appl., 158, 231-305 (1991) · Zbl 0778.58011
[4] Brezis, H.; Nirenberg, L., \( H^1\) versus \(C^1\) minimizers, C. R. Acad. Sci. Paris, 317, 465-472 (1993) · Zbl 0803.35029
[5] Castro, A.; Cossio, J., Multiple solutions for a nonlinear Drichlet problem, SIAM J. Math. Anal., 25, 1554-1561 (1994) · Zbl 0807.35039
[6] Castro, A.; Cossio, J.; Neuberger, J. M., A minmax principle, index of the critical point, and existence of sign-changing solutions to elliptic boundary value problems, Electron. J. Differ. Equ., 70, 1-18 (1998) · Zbl 0901.35028
[7] Castro, A.; Cossio, J.; Vélez, C., Existence of seven solutions for an asymptotically linear Dirichlet problem without symmetries, Ann. Mat. Pura Appl., 192, 607-619 (2013) · Zbl 1277.35149
[8] Castro, A.; Cossio, J.; Herrón, S.; Vélez, C., Existence and multiplicity results for a semilinear elliptic problem, J. Math. Anal. Appl., 475, 1493-1501 (2019) · Zbl 1418.35186
[9] Castro, A.; Lazer, A., Critical point theory and the number of solutions of nonlinear Dirichlet problem, Ann. Mat. Pura Appl., 70, 113-137 (1979) · Zbl 0426.35038
[10] Chang, K.-C., Solutions of asymptotically linear operator equations via Morse theory, Commun. Pure Appl. Math., 34, 5, 693-712 (1981) · Zbl 0444.58008
[11] Chang, K.-C., Infinite Dimensional Morse Theory and Multiple Solutions (1993), Birkhäuser-Boston
[12] Chang, K.-C., Methods in Nonlinear Analysis (2005), Springer-Verlag: Springer-Verlag Berlin
[13] Chang, K. C.; Ghoussoub, N., The Conley index and the critical groups via an extension of Gromoll-Meyer theory, Topol. Methods Nonlinear Anal., 7, 77-93 (1996) · Zbl 0898.58006
[14] Chang, K. C.; Li, S.; Liu, J., Remarks on multiple solutions for asymptotically linear elliptic boundary value problems, Topol. Methods Nonlinear Anal., 3, 179-187 (1994) · Zbl 0812.35031
[15] Chang, K.-C.; Wang, Z.-Q., Notes on the bifurcation theorem, J. Fixed Point Theory Appl., 1, 195-208 (2007) · Zbl 1139.58008
[16] de Figueiredo, D. G., Positive solutions of semilinear elliptic problems, (Differential Equations. Differential Equations, São Paulo, 1981. Differential Equations. Differential Equations, São Paulo, 1981, Lecture Notes in Math., vol. 957 (1982), Springer: Springer Berlin-New York), 34-87
[17] Gromoll, D.; Meyer, W., On differential functions with isolated point, Topology, 8, 361-369 (1969) · Zbl 0212.28903
[18] Hofer, H., Variational and topological methods in partially ordered Hilbert spaces, Math. Ann., 261, 493-514 (1982) · Zbl 0488.47034
[19] Li, S.; Willem, M., Multiple solutions for asymptotically linear boundary value problems in which the nonlinearity crosses at least one eigenvalue, Nonlinear Differ. Equ. Appl., 5, 479-490 (1998) · Zbl 0933.35066
[20] Motreanu, D.; Motreanu, V. V.; Papageorgiou, N. S., Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems (2014), Springer: Springer New York
[21] Rabinowitz, P., Minimax Methods in Critical Point Theory with Application to Differential Equations, CBMS, vol. 65 (1986), AMS: AMS Providence
[22] Rabinowitz, P.; Su, J.; Wang, Z.-Q., Multiple solutions of superlinear elliptic equations, Rend. Lincei Mat. Appl., 18, 97-108 (2007) · Zbl 1223.35173
[23] Su, J., Multiple results for asymptotically linear elliptic problems at resonance, J. Math. Anal. Appl., 278, 397-408 (2003) · Zbl 1290.35109
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.