zbMATH — the first resource for mathematics

Bifurcations for a coupled Schrödinger system with multiple components. (English) Zbl 1330.35134
Summary: In this paper, we study local bifurcations of an indefinite elliptic system with multiple components: \[ \begin{cases}-\Delta{u_{j}} + au_{j} = \mu_{j}u_{j}^3 + \beta \sum_{k \neq j}u_{k}^2u_{j},\\ u_{j} > 0 {\text{ in}}\,\Omega, u_{j} = 0 {\text{ on}}\, \partial \Omega, j = 1,\dots,n. \end{cases} \] Here \({\Omega \subset\mathbb{R}^N}\) is a smooth and bounded domain, \({n \geq 3, a < - \Lambda_1 {\text{ where}}\, \Lambda_1}\) is the principal eigenvalue of \((-\Delta, H_{0}^1(\Omega))\); \(\mu_{j}\) and \(\beta\) are real constants. Using the positive and nondegenerate solution of the scalar equation \(-\Delta\omega - \omega = -\omega^3\), \(\omega \in H_{0}^1(\Omega)\), we construct a synchronized solution branch \({\mathcal{T}_\omega}\). Then we find a sequence of local bifurcations with respect to \({\mathcal{T}_\omega}\), and we find global bifurcation branches of partially synchronized solutions.

35J57 Boundary value problems for second-order elliptic systems
35B09 Positive solutions to PDEs
35B32 Bifurcations in context of PDEs
35J10 Schrödinger operator, Schrödinger equation
35J47 Second-order elliptic systems
35J61 Semilinear elliptic equations
58C40 Spectral theory; eigenvalue problems on manifolds
Full Text: DOI arXiv
[1] Ambrosetti, A.; Colorado, E., Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. Acad. Sci. Paris, 342, 453-458, (2006) · Zbl 1094.35112
[2] Ambrosetti, A.; Colorado, E., Standing waves of some coupled nonlinear Schrödinger equations, J. Lond. Math. Soc., 75, 67-82, (2007) · Zbl 1130.34014
[3] Bartsch, T., Bifurcation in a multicomponent system of nonlinear Schrödinger equations, J. Fixed Point Theory Appl., 13, 37-50, (2013) · Zbl 1281.35004
[4] Bartsch, T.; Dancer, E.N.; Wang, Z.-Q., A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system, Calc. Var. Partial Differ. Equ., 37, 345-361, (2010) · Zbl 1189.35074
[5] Bartsch, T.; Wang, Z.-Q., Note on ground states of nonlinear Schrödinger systems, J. Partial. Differ. Equ., 19, 200-207, (2006) · Zbl 1104.35048
[6] Bartsch, T.; Wang, Z.-Q.; Wei, J., Bound states for a coupled Schrödinger system, J. Fixed Point Theory Appl., 2, 353-367, (2007) · Zbl 1153.35390
[7] Dancer, E.N., Global structure of the solutions of non-linear real analytic eigenvalue problems, Proc. Lond. Math. Soc. (3), 27, 747-765, (1973) · Zbl 0268.47065
[8] Dancer, E.N.; Wei, J.C.; Weth, T., A priori bounds versus multiple existence of positive solutions for a nonlinear Schrödinger system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 953-969, (2010) · Zbl 1191.35121
[9] Esry, B.D.; Greene, C.H.; Burke, J.P.; Bohn, J.L., Hartree-Fock theory for double condensates, Phys. Rev. Lett., 78, 3594-3597, (1997)
[10] Lin, T.C.; Wei, J.C., Ground state of \(N\) coupled nonlinear Schrödinger equations in \({\mathbb{R}^n, n ≤ 3}\), Commun. Math. Phys., 255, 629-653, (2005) · Zbl 1119.35087
[11] Lin, T.C.; Wei, J.C., Solitary and self-similar solutions of two-component system of nonlinear Schrödinger equations, Phys. D Nonlinear Phenom., 220, 99-115, (2006) · Zbl 1105.35116
[12] Liu, Z.L.; Wang, Z.-Q., Multiple bound states of nonlinear Schrödinger systems, Commun. Math. Phys., 282, 721-731, (2008) · Zbl 1156.35093
[13] Liu, Z.L.; Wang, Z.-Q., Ground states and bound states of a nonlinear Schrödinger system, Adv. Nonlinear Stud., 10, 175-193, (2010) · Zbl 1198.35067
[14] Maia, L.A.; Montefusco, E.; Pellacci, B., Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equ., 299, 743-767, (2006) · Zbl 1104.35053
[15] Mawhin J., Willem M.: Critical Point Theory and Hamiltonian System. Spinger, New York (1989) · Zbl 0676.58017
[16] Mitchell, M.; Chen, Z.; Shih, M.; Segev, M., Self-trapping of partially spatially incoherent light, Phys. Rev. Lett., 77, 490-493, (1996)
[17] Oruganti, S.; Shi, J.P.; Shivaji, R., Diffusive logistic equation with constant yield harvesting, I: steady states, Trans. Am. Math. Soc., 354, 3601-3619, (2002) · Zbl 1109.35049
[18] Rüegg, Ch.; Cavadini, N.; Furrer, A.; Güdel, H.-U.; Krämer, K.; Mutka, H.; Wildes, A.; Habicht, K.; Vorderwischu, P., Bose-Einstein condensation of the triplet states in the magnetic insulator tlcucl3, Nature, 423, 62-65, (2003)
[19] Sirakov, B., Least energy solitary waves for a system of nonlinear Schrödinger equations in \({\mathbb{R}^n}\), Commun. Math. Phys., 271, 199-221, (2007) · Zbl 1147.35098
[20] Tian, R.-S.; Wang, Z.-Q., Multiple solitary wave solutions of nonlinear Schrödinger systems, Top. Methods Nonlinear Anal., 37, 203-223, (2011) · Zbl 1255.35101
[21] Tian, R.-S.; Wang, Z.-Q., Bifurcation results on positive solutions of an indefinite nonlinear elliptic system, Discrete Contin. Dyn. Syst. Ser. A, 33, 335-344, (2013) · Zbl 06146691
[22] Tian, R.-S.; Wang, Z.-Q., Bifurcation results on positive solutions of an indefinite nonlinear elliptic system II, Adv. Nonlinear Stud., 13, 245-262, (2013) · Zbl 1277.35162
[23] Wei, J.; Weth, T., Nonradial symmetric bound states for a system of two coupled Schrödinger equations, Rend. Lincei Mat. Appl., 18, 279-293, (2007) · Zbl 1229.35019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.