×

zbMATH — the first resource for mathematics

Optimal consumption under deterministic income. (English) Zbl 1305.49034
From the Abstract: “We consider an individual or household endowed with an initial wealth, having an income and consuming goods and services. The wealth development rate is assumed to be a deterministic continuous function of time. The objective is to maximize the discounted consumption over a finite time horizon”.
From the Introduction: “The contribution of the present paper is in establishing a novel algorithm that allows to determine a closed-form expression for the value function and the optimal strategy. The basic idea of the algorithm is a systematic balancing of immediate consumption and of the future evolution of the system”.
To this purpose, the authors first prove the existence and uniqueness of the solution of the Hamilton-Jacobi equation in the viscosity sense, also using the concept of discontinuous viscosity solutions by the lower and upper semi-continuous envelopes.

MSC:
49L25 Viscosity solutions to Hamilton-Jacobi equations in optimal control and differential games
49N90 Applications of optimal control and differential games
Software:
Duali
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Fleming, W.H., Rishel, R.W.: Deterministic and Stochastic Optimal Control. Springer, New York (1975) · Zbl 0323.49001
[2] Bertsekas, D.P.: Dynamic Programming: Deterministic and Stochastic Models. Prentice Hall, New York (1987) · Zbl 0649.93001
[3] Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston (1997) · Zbl 0890.49011
[4] Schmidli, H.: Stochastic Control in Insurance. Springer, London (2008) · Zbl 1133.93002
[5] Giannessi, F., Maugeri, A. (eds.): Variational Analysis and Applications. Springer, New York (2005) · Zbl 1077.49001
[6] Aoki, M.: Optimal Control and System Theory in Dynamic Economic Analysis. North Holland, New York (1976) · Zbl 0349.90030
[7] Bryson, A.E. Jr., Ho, Y.: Applied Optimal Control. Blaisdell, Waltham (1969)
[8] Chow, G.C.: Analysis and Control of Dynamic Economic Systems. Wiley, New York (1975) · Zbl 0314.90001
[9] Dixit, A.K.: Optimization in Economic Theory. Oxford University Press, Oxford (1990) · Zbl 0331.90035
[10] Dorfman, R., An economic interpretation of optimal control theory, Am. Econ. Rev., 59, 817-831, (1969)
[11] Macki, J.W., Strauss, A.: Introduction to Optimal Control Theory. Springer, New York (1982) · Zbl 0493.49001
[12] Intriligator, M.D., Applications of optimal control theory in economics, Synthese, 31, 271-288, (1975) · Zbl 0312.90005
[13] Kendrick, D.A.: Stochastic Control for Economic Models. McGraw-Hill, New York (1981) · Zbl 0478.93003
[14] Kendrick, D.A., Stochastic control for economic models: past, present and the paths ahead, J. Econ. Dyn. Control, 29, 3-30, (2005) · Zbl 1202.93173
[15] Murray, R.M. (ed.): Control in an Information Rich World: Report of the Panel on Future Directions in Control, Dynamics, and Systems. SIAM, Philadelphia (2003) · Zbl 1101.93003
[16] Neck, R., Control theory and economic policy: balance and perspectives, Annu. Rev. Control, 33, 79-88, (2009)
[17] Moyer, H.G.: Deterministic Optimal Control: an Introduction for Scientists. Trafford, Victoria (2004) · Zbl 1052.49001
[18] Seierstad, A., Sydsæter, K.: Optimal Control Theory with Economic Applications. North-Holland, Amsterdam (1987) · Zbl 0613.49001
[19] Weber, T.A.: Optimal Control Theory with Applications in Economics. MIT Press, Cambridge (2011). Foreword by A.V. Kryazhimskiy · Zbl 1272.49001
[20] Karatzas, I.; Lehoczky, J.P.; Sethi, S.P.; Shreve, S.E., Explicit solution of a general consumption/investment problem, Math. Oper. Res., 11, 261-294, (1986) · Zbl 0622.90018
[21] Karatzas, I.; Lehoczky, J.P.; Shreve, S.E., Optimal portfolio and consumption decisions for a “small investor” on a finite horizon, SIAM J. Control Optim., 25, 1157-1586, (1987) · Zbl 0644.93066
[22] Cox, J.C.; Huang, C.F., Optimal consumption and portfolio policies when asset prices follow a diffusion process, J. Econ. Theory, 49, 33-83, (1989) · Zbl 0678.90011
[23] Avanzi, B., Strategies for dividend distribution: a review, N. Am. Actuar. J., 13, 217-251, (2009)
[24] Albrecher, H.; Thonhauser, S., Optimality results for dividend problems in insurance, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat., 103, 295-320, (2009) · Zbl 1187.93138
[25] Grandits, P., Optimal consumption in a Brownian model with absorption and finite time horizon, Appl. Math. Optim., 67, 197-241, (2013) · Zbl 1272.93128
[26] Barron, E.N.; Jensen, R., Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians, Commun. Partial Differ. Equ., 15, 293-309, (1990) · Zbl 0732.35014
[27] Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998) · Zbl 0902.35002
[28] Fleming, W.H., Soner, H.M.: Controlled Markov Processes and Viscosity Solutions. Springer, New York (1993) · Zbl 0773.60070
[29] Sontag, E.D.: Mathematical Control Theory. Springer, New York (1990) · Zbl 0703.93001
[30] Zabczyk, J.: Mathematical Control Theory: an Introduction. Birkhäuser, Boston (1992) · Zbl 1071.93500
[31] Sulem, A., Explicit solution of a two-dimensional deterministic inventory problem, Math. Oper. Res., 11, 134-146, (1986) · Zbl 0601.93070
[32] Sulem, A.: Résolution explicite d’Inéquations quasi-variationelles associées à des problèmes de gestion de stock. Thèse 3e cycle. Paris IX-Dauphine (1983)
[33] Sulem, A., A solvable one-dimensional model of a diffusion inventory system, Math. Oper. Res., 11, 126-133, (1984)
[34] Amman, H., Numerical methods for linear-quadratic models, No. 1, 587-618, (1996), Amsterdam · Zbl 1126.65315
[35] Bellman, R.: An Introduction to the Theory of Dynamic Programming. Rand, Santa Monica (1953) · Zbl 0051.37402
[36] Crandall, M.G.; Ishii, H.; Lions, P., User’s guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., 27, 1-67, (1992) · Zbl 0755.35015
[37] Paxton, C., Consumption and income seasonality in Thailand, J. Polit. Econ., 101, 39-72, (1993)
[38] Lutz, G.A.: Business Cycle Theory. Oxford University Press, Oxford (2002)
[39] Mnif, M.; Sulem, A., Optimal risk control and dividend policies under excess of loss reinsurance, Stochastics, 77, 455-476, (2005) · Zbl 1076.93046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.