×

zbMATH — the first resource for mathematics

Topological phases: isomorphism, homotopy and \(K\)-theory. (English) Zbl 1332.82086

MSC:
82D20 Statistical mechanical studies of solids
82B10 Quantum equilibrium statistical mechanics (general)
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
19M05 Miscellaneous applications of \(K\)-theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.2307/1970106 · Zbl 0129.15601 · doi:10.2307/1970106
[2] DOI: 10.1088/1367-2630/12/6/065010 · doi:10.1088/1367-2630/12/6/065010
[3] DOI: 10.1007/s00220-005-1330-9 · Zbl 1092.82020 · doi:10.1007/s00220-005-1330-9
[4] DOI: 10.1063/1.3149495 · doi:10.1063/1.3149495
[5] DOI: 10.1007/s00023-013-0236-x · Zbl 1286.81109 · doi:10.1007/s00023-013-0236-x
[6] DOI: 10.1038/nature13915 · doi:10.1038/nature13915
[7] DOI: 10.1209/0295-5075/106/60002 · doi:10.1209/0295-5075/106/60002
[8] Prodan E., Top. Quant. Matter 1 pp 1– (2014)
[9] DOI: 10.1017/CBO9780511611476 · doi:10.1017/CBO9780511611476
[10] DOI: 10.1007/978-1-4612-0005-5 · doi:10.1007/978-1-4612-0005-5
[11] DOI: 10.1007/978-3-540-79890-3 · Zbl 1153.55005 · doi:10.1007/978-3-540-79890-3
[12] Blackadar B., K-theory for Operator Algebras (1998) · Zbl 0913.46054
[13] Nicolaescu L. I., Generalized Symplectic Geometries and the Index of Families of Elliptic Problems (1997) · Zbl 0903.35015
[14] Higson N., Analytic K-homology (2000)
[15] DOI: 10.1103/PhysRevLett.65.2185 · doi:10.1103/PhysRevLett.65.2185
[16] DOI: 10.1007/BF02102644 · Zbl 0822.47056 · doi:10.1007/BF02102644
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.