zbMATH — the first resource for mathematics

Fu-Kane-Mele monopoles in semimetals. (English) Zbl 1373.82099
Summary: In semimetals with time-reversal symmetry, the interplay between Weyl points and Fu-Kane-Mele indices results in coexisting surface Dirac cones and Fermi arcs that are transmutable without a topological phase transition. We show that Weyl points act as a new type of monopole, and that their connectivity is essential for capturing the full topology of semimetals and their role as intermediaries of topological insulator transitions. The history of Weyl point creation-annihilation provides a simple and mathematically equivalent way to classify semimetals, and directly prefigures the surface state topology. We further predict the possibility of a topological Dirac cone on the interface between two Weyl semimetals.

82D35 Statistical mechanical studies of metals
82B26 Phase transitions (general) in equilibrium statistical mechanics
Full Text: DOI
[1] Hasan, M.; Kane, C., Colloquium: topological insulators, Rev. Mod. Phys., 82, 3045-3067, (2010)
[2] Qi, X.-L.; Zhang, S.-C., Topological insulators and superconductors, Rev. Mod. Phys., 83, 1057-1110, (2011)
[3] Wan, X.; Turner, A.; Vishwanath, A.; Savrasov, S., Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B, 83, (2011)
[4] Yang, K.-Y.; Lu, Y.-M.; Ran, Y., Quantum Hall effects in a Weyl semimetal: possible application in pyrochlore iridates, Phys. Rev. B, 84, (2011)
[5] Xu, G.; Weng, H.; Wang, Z.; Dai, X.; Fang, Z., Chern semimetal and the quantized anomalous Hall effect in hgcr_2se_4, Phys. Rev. Lett., 107, (2011)
[6] Burkov, A.; Balents, L., Weyl semimetal in a topological insulator multilayer, Phys. Rev. Lett., 107, (2011)
[7] Halász, G.; Balents, L., Time-reversal invariant realization of the Weyl semimetal phase, Phys. Rev. B, 85, (2012)
[8] Vafek, O.; Vishwanath, A., Dirac fermions in solids: from high-\(T_c\) cuprates and graphene to topological insulators and Weyl semimetals, Annu. Rev. Condens. Matter Phys., 5, 1, 83-112, (2014)
[9] Nielsen, H.; Ninomiya, M., Absence of neutrinos on a lattice, Nucl. Phys. B, 193, 1, 173-194, (1981)
[10] Mathai, V.; Thiang, G., Global topology of Weyl semimetals and Fermi arcs, J. Phys. A, Math. Theor., 50, 11, (2017) · Zbl 1364.82063
[11] Mathai, V.; Thiang, G., Differential topology of semimetals, Commun. Math. Phys., 355, 2, 561-602, (2017) · Zbl 1376.82101
[12] Lv, B.; Weng, H.; Fu, B.; Wang, X.; Miao, H.; Ma, J.; Richard, P.; Huang, X.; Zhao, L.; Chen, G.; Fang, Z.; Dai, X.; Qian, T.; Ding, H., Experimental discovery of Weyl semimetal taas, Phys. Rev. X, 5, (2015)
[13] Xu, S.-Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.-C.; Huang, S.-M.; Zheng, H.; Ma, J.; Sanchez, D.; Wang, B.; Bansil, A.; Chou, F.; Shibayev, P.; Lin, H.; Jia, S.; Hasan, M., Discovery of a Weyl fermion semimetal and topological Fermi arcs, Science, 349, 6248, 613-617, (2015)
[14] Zhang, C.-L.; Xu, S.-Y.; Belopolski, I.; Yuan, Z.; Lin, Z.; Tong, B.; Bian, G.; Alidoust, N.; Lee, C.-C.; Huang, S.-M.; Chang, T.-R.; Chang, G.; Hsu, C.-H.; Jeng, H.-T.; Neupane, M.; Sanchez, D.; Zheng, H.; Wang, J.; Lin, H.; Zhang, C.; Lu, H.-Z.; Shen, S.-Q.; Neupert, T.; Hasan, M.; Jia, S., Signatures of the Adler-Bell-Jackiw chiral anomaly in a Weyl fermion semimetal, Nat. Commun., 7, (2016)
[15] Grushin, A.; Venderbos, J.; Bardarson, J., Coexistence of Fermi arcs with two-dimensional gapless Dirac states, Phys. Rev. B, 91, (2015)
[16] Lau, A.; Koepernik, K.; van den Brink, J.; Ortix, C., Generic coexistence of Fermi arcs and Dirac cones on the surface of time-reversal invariant Weyl semimetals
[17] Sheng, X.-L.; Yu, Z.-M.; Yu, R.; Weng, H.; Yang, S., d-orbital topological insulator and semimetal in antifluorite cu_2S family: contrasting spin helicities, nodal box, and hybrid surface states, J. Phys. Chem. Lett., 8, 3506-3511, (2017)
[18] Fu, L.; Kane, C., Time reversal polarization and a \(Z_2\) adiabatic spin pump, Phys. Rev. B, 74, (2006)
[19] Fu, L.; Kane, C.; Mele, E., Topological insulators in three dimensions, Phys. Rev. Lett., 98, (2007)
[20] De Nittis, G.; Gomi, K., Classification of “quaternionic“ Bloch-bundles, Commun. Math. Phys., 339, 1, 1-55, (2015) · Zbl 1326.57047
[21] Kourtis, S.; Li, J.; Wang, Z.; Yazdani, A.; Bernevig, B., Universal signatures of Fermi arcs in quasiparticle interference on the surface of Weyl semimetals, Phys. Rev. B, 93, (2016)
[22] Okugawa, R.; Murakami, S., Dispersion of Fermi arcs in Weyl semimetals and their evolutions to Dirac cones, Phys. Rev. B, 89, 23, (2014)
[23] De Nittis, G.; Gomi, K., Topological nature of fu-Kane-mele invariants · Zbl 1390.57017
[24] Bott, R.; Tu, L., Differential forms in algebraic topology, Graduate Texts in Mathematics, (1995), Springer New York
[25] Hatcher, A., Algebraic topology, (2002), Cambridge University Press · Zbl 1044.55001
[26] Gross, P.; Kotiuga, P., Electromagnetic theory and computation: A topological approach, Math. Sci. Res. Inst. Publ., vol. 48, (2004), Cambridge Univ. Press · Zbl 1096.78001
[27] K. Gomi, G. Thiang, unpublished.
[28] Qi, X.-L.; Hughes, T.; Zhang, S.-C., Topological field theory of time-reversal invariant insulators, Phys. Rev. B, 78, (2008)
[29] Thouless, D., Quantization of particle transport, Phys. Rev. B, 27, 6083-6087, (1983)
[30] Kim, K.; Lee, W.-R.; Kim, Y.; Park, K., Surface to bulk Fermi arcs via Weyl nodes as topological defects, Nat. Commun., 7, (2016)
[31] Hatsugai, Y., Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., 71, 3697-3700, (1993) · Zbl 0972.81712
[32] Graf, G.; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851-895, (2013) · Zbl 1291.82120
[33] Avila, J.; Schulz-Baldes, H.; Villegas-Blas, C., Topological invariants of edge states for periodic two-dimensional models, Math. Phys. Anal. Geom., 16, 2, 137-170, (2013) · Zbl 1271.81210
[34] Kellendonk, J.; Richter, T.; Schulz-Baldes, H., Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys., 14, 87-119, (2002) · Zbl 1037.81106
[35] Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J.; Ong, N.; Fedorov, A.; Lin, H.; Bansil, A.; Grauer, D.; Hor, Y.; Cava, R.; Hasan, M., A tunable topological insulator in the spin helical Dirac transport regime, Nature, 460, 1101-1105, (2009)
[36] Dwivedi, V.; Ramamurthy, S., Connecting the dots: time-reversal symmetric Weyl semimetals with tunable Fermi arcs, Phys. Rev. B, 94, (2016)
[37] Sancho, M.; Sancho, J.; Rubio, J., Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, Met. Phys., 15, 4, 851, (1985)
[38] Prodan, E.; Schulz-Baldes, H., Bulk and boundary invariants for complex topological insulators: from K-theory to physics, Mathematical Physics Studies, (2016), Springer Int. Pub. Switzerland · Zbl 1342.82002
[39] Mathai, V.; Thiang, G., T-duality simplifies bulk-boundary correspondence, Commun. Math. Phys., 345, 2, 675-701, (2016) · Zbl 1353.82068
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.