zbMATH — the first resource for mathematics

Crystallographic bulk-edge correspondence: glide reflections and twisted mod 2 indices. (English) Zbl 1436.19011
The authors prove as the main result (Theorem 7.1 in this paper) that an index theorem for a twisted family of Toeplitz operators, as a generalization of the classical index theorem for Toeplitz operators, holds, in the sense that the topological push-forward (or bulk-edge) map of some \(\mathbb Z_2\)-equivariant (or twisted) \(K\)-theory groups for \(B_x \times B_y\) as a bundle over \(B_x=\mathbb R/ 2\pi \mathbb Z=B_y\) as a circle \(S^1\) with some sense, in the Gysin exact sequence in the topological \(K\)-theory is induced by the assignment to the input edge-bulk data \(U, V\) from the 1-dim Brillouin zone \(B_x\) and \(B_x \times B_y\) both to the unitary group \(U(2n)\), respectively, of the same mod \(2\) dimension as analytic invariant, of the kernels of the Toeplitz operators associated to the edge \(U\) as involving the multiplication operator for \(U\) on the Hilbert space \(L^2(S^1)\).
There are many more details, omitted here in the review.

19L50 Twisted \(K\)-theory; differential \(K\)-theory
19L47 Equivariant \(K\)-theory
19K56 Index theory
47L80 Algebras of specific types of operators (Toeplitz, integral, pseudodifferential, etc.)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
47A53 (Semi-) Fredholm operators; index theories
Full Text: DOI
[1] Atiyah, MF, Bott periodicity and the index of elliptic operators, Q. J. Math. Oxf. Ser., 2, 113-140, (1968) · Zbl 0159.53501
[2] Atiyah, MF; Taam, CT (ed.), Algebraic topology and operators in Hilbert space, No. 103, 101-121, (1969), Berlin
[3] Atiyah, MF; Singer, IM, The index of elliptic operators I, Ann. Math., 87, 484-530, (1968) · Zbl 0164.24001
[4] Bradlyn, B.; Elcoro, L.; Cano, J.; Vergniory, MG; Wang, Z.; Felser, C.; Aroyo, MI; Bernevig, BA, Topological quantum chemistry, Nature, 547, 298-305, (2017)
[5] Benameur, M-T; Cardona, A. (ed.); Paycha, S. (ed.); Ocampo, H. (ed.), Noncommutative geometry and abstract integration theory, 157-227, (2003), River Edge
[6] Coburn, LA, The \(C^*\)-algebra generated by an isometry. II, Trans. Am. Math. Soc., 137, 211-217, (1969) · Zbl 0186.19704
[7] Conway, JH; Friedrichs, OD; Huson, DH; Thurston, WP, On three-dimensional orbifolds and space groups, Beiträge Algebra Geom., 42, 475-507, (2001) · Zbl 0991.20036
[8] Cuntz, J.; Bak, A. (ed.), \(K\)-theory and \(C^*\)-algebras, No. 1046, 55-79, (1984), Berlin
[9] Davidson, K.R.: \(C^*\)-algebras by example. Fields Inst. Monogr., vol. 6. Providence, RI (1996) · Zbl 0958.46029
[10] Monvel, LB, On the index of Toeplitz operators of several complex variables, Invent. Math., 50, 249-272, (1979) · Zbl 0398.47018
[11] Nittis, G.; Gomi, K., The cohomological nature of the Fu-Kane-Mele invariant, J. Geom. Phys., 124, 124-164, (2018) · Zbl 1390.57017
[12] Fang, C.; Fu, L., New classes of three-dimensional topological crystalline insulators: nonsymmorphic and magnetic, Phys. Rev. B, 91, 161105, (2015)
[13] Freed, DS; Moore, G., Twisted equivariant matter, Ann. Henri Poincaré, 14, 1927-2023, (2013) · Zbl 1286.81109
[14] Gohberg, IC; Krein, MG, The basic propositions on defect numbers, root numbers and indices of linear operators, Am. Math. Soc. Transl., 2, 185-264, (1960)
[15] Gomi, K., Twists on the torus equivariant under the 2-dimensional crystallographic point groups, SIGMA Symmetry Integr. Geom. Methods Appl., 13, 014, (2017) · Zbl 1362.55006
[16] Gomi, K.: Freed-Moore \(K\)-theory. arXiv:1705.09134
[17] Gomi, K., A variant of \(K\)-theory and topological T-duality for real circle bundles, Commun. Math. Phys., 334, 923-975, (2015) · Zbl 1320.19001
[18] Gomi, K., Thiang, G.C.: Crystallographic T-duality. arXiv:1806.11385
[19] Haldane, FDM, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., 61, 2015-2018, (1988)
[20] Halperin, BI, Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, Phys. Rev. B, 25, 2185, (1982)
[21] Hannabuss, K.; Mathai, V.; Thiang, GC, T-duality simplifies bulk-boundary correspondence: the noncommutative case, Lett. Math. Phys., 108, 1163-1201, (2018) · Zbl 1395.58008
[22] Hatsugai, Y., Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., 71, 3697, (1993) · Zbl 0972.81712
[23] Hatsugai, Y., Bulk-edge correspondence in graphene with/without magnetic field: Chiral symmetry, Dirac fermions and Edge states, Solid State Commun., 149, 1061, (2009)
[24] Hsieh, D.; etal., A tunable topological insulator in the spin helical Dirac transport regime, Nature, 460, 1101-1105, (2009)
[25] Karoubi, M.: \(K\)-theory: an introduction. In: Grundlehren math. Wiss., vol 226. Springer, Berlin (1978) · Zbl 0382.55002
[26] Karoubi, M.: Twisted bundles and twisted \(K\)-theory. In: Cortinãs, G. (ed.) Topics in noncommutative geometry, Clay Math. Proc., vol. 16, pp. 223-257. Providence, RI (2012) · Zbl 1318.19010
[27] Kellendonk, J.; Richter, T.; Schulz-Baldes, H., Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys., 14, 87-119, (2002) · Zbl 1037.81106
[28] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Ser., 1134, 22-30, (2009) · Zbl 1180.82221
[29] Kopsky, V., Litvin, D.B., eds.: International Tables for Crystallography, Volume E: Subperiodic groups, E (5th ed.), Berlin, New York (2002)
[30] Kruthoff, J.; Boer, J.; Wezel, J.; Kane, CL; Slager, R-J, Topological classification of crystalline insulators through band structure combinatorics, Phys. Rev. X, 7, 041069, (2017)
[31] Kubota, Y., Notes on twisted equivariant K-theory for \(C^*\)-algebras, Int. J. Math., 27, 1650058, (2016) · Zbl 1347.19001
[32] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., 349, 493-525, (2017) · Zbl 1357.82013
[33] Lück, W., Stamm, R.: Computations of \(K\)- and \(L\)-theory of cocompact planar groups. \(K\)-theory 21, 249-292 (2000) · Zbl 0979.19003
[34] Mendez-Diez, S.; Rosenberg, J., \(K\)-theoretic matching of brane charges in S- and U-duality, Adv. Theor. Math. Phys., 16, 1591-1618, (2012) · Zbl 1272.81166
[35] Michel, L.; Zak, J., Connectivity of energy bands in crystals, Phys. Rev. B, 59, 5998, (1999)
[36] Mislin, G.: Equivariant \(K\)-homology of the classifying space for proper actions. In: Proper group actions and the Baum-Connes conjecture, pp. 1-78. Birkhäuser, Basel (2003)
[37] Moutuou, E.M.: Twisted groupoid \(KR\)-Theory. Ph.D. thesis, Université de Lorraine (2012). http://www.theses.fr/2012LORR0042
[38] Murphy, G.J.: \(C\)*-Algebras and Operator Theory. Academic Press, Boston (1990) · Zbl 0714.46041
[39] Phillips, NC, The Toeplitz operator proof of noncommutative Bott periodicity, J. Austral. Math. Soc. (Ser. A), 53, 229-251, (1992) · Zbl 0787.46057
[40] Pimsner, M.; Voiculescu, D., Exact sequences for \(K\)-groups and \(EXT\)-groups of certain cross-product \(C^*\)-algebras, J. Oper. Theory, 4, 93-118, (1980) · Zbl 0474.46059
[41] Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Springer, Basel (2016) · Zbl 1342.82002
[42] Prodan, E.; Schulz-Baldes, H., Generalized Connes-Chern characters in \(KK\)-theory with an application to weak invariants of topological insulators, Rev. Math. Phys., 28, 1650024, (2016) · Zbl 1358.81130
[43] Ryu, S.; Hatsugai, Y., Topological origin of zero-energy edge states in particle-hole symmetric systems, Phys. Rev. Lett., 89, 077002, (2002)
[44] Schneider, A.: Equivariant T-duality of Locally Compact Abelian Groups. arXiv:0906.3734
[45] Shiozaki, K.; Sato, M.; Gomi, K., \(\mathbb{Z}_2\)-topology in nonsymmorphic crystalline insulators: Möbius twist in surface states, Phys. Rev. B, 91, 155120, (2015)
[46] Shiozaki, K.; Sato, M.; Gomi, K., Topological crystalline materials: general formulation, module structure, and wallpaper groups, Phys. Rev. B, 95, 235425, (2017)
[47] Stolz, S.: Concordance classes of positive scalar curtavure metrics. Preprint https://www3.nd.edu/ stolz/preprint.html. Accessed 9 Aug 2018
[48] Taylor, KF, \(C^*\)-algebras of crystal groups, Oper. Theory Adv. Appl., 41, 511-518, (1989) · Zbl 0691.46040
[49] Thiang, GC, On the \(K\)-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 17, 757-794, (2016) · Zbl 1344.81144
[50] Thiang, GC, Topological phases: isomorphism, homotopy and K-theory, Int. J. Geom. Methods Mod. Phys., 12, 1550098, (2015) · Zbl 1332.82086
[51] Valette, A.: Introduction to the Baum-Connes conjecture. Lectures Math. ETH Zürich. Birkhäuser Verlag, Basel (2002) · Zbl 1136.58013
[52] Wan, X.; Turner, AM; Vishwanath, A.; Savrasov, SY, Topological semimetal and fermi-arc surface states in the electronic structure of pyrochlore iridates, Phys. Rev. B., 83, 205101, (2011)
[53] Wieder, BJ, Wallpaper fermions and the nonsymmorphic dirac insulator, Science, 361, 246-251, (2018)
[54] Witten, E., D-branes and \(K\)-theory, J. High Energy Phys., 12, 019, (1998) · Zbl 0959.81070
[55] Xu, S-Y, Discovery of a Weyl Fermion semimetal and topological Fermi arcs, Science, 349, 613-617, (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.