×

zbMATH — the first resource for mathematics

T-duality simplifies bulk-boundary correspondence: the noncommutative case. (English) Zbl 1395.58008
The authors of this interesting paper use the ideas of the \(K\)-theory of \(C^*\)-algebras in the context of the higher-dimensional Hall effect. In particular, they show that the Connes-Thom isomorphisms are related to the so-called bulk-boundary correspondence arising in physics. The paper contains other examples of an interplay between noncommutative geometry and physics.

MSC:
58B34 Noncommutative geometry (à la Connes)
46L80 \(K\)-theory and operator algebras (including cyclic theory)
53D22 Canonical transformations in symplectic and contact geometry
81V70 Many-body theory; quantum Hall effect
46L85 Noncommutative topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atiyah, MF; Donnelly, H; Singer, IM, Eta invariants, signature defects of cusps, and values of L-functions, Ann. Math., 118, 131-177, (1983) · Zbl 0531.58048
[2] Bellissard, J; Elst, A; Schulz-Baldes, H, The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451, (1994) · Zbl 0824.46086
[3] Bellissard, J.: \(K\)-theory of \(C^*\)-algebras in solid state physics. In: Statistical Mechanics and Field Theory: Mathematical Aspects (Groningen, 1985), Lecture Notes in Physics, vol. 257, pp. 99-156. Springer, Berlin (1986) · Zbl 1344.81144
[4] Bouwknegt, P; Evslin, J; Mathai, V, T-duality: topology change from \(H\)-flux, Commun. Math. Phys., 249, 383-415, (2004) · Zbl 1062.81119
[5] Bramwell, ST; etal., Measurement of the charge and current of magnetic monopoles in spin ice, Nature, 461, 956-959, (2009)
[6] Chang, M-C; Niu, Q, Berry phase, hyperorbits, and the Hofstadter spectrum: semiclassical dynamics in magnetic Bloch bands, Phys. Rev. B, 53, 7010-7023, (1996)
[7] Connes, A, An analogue of the thom isomorphism for crossed products of a \(C^*\)-algebra by an action of \({{\mathbb{R}}}\), Adv. Math., 39, 31-55, (1981) · Zbl 0461.46043
[8] Cuntz, J.: \(K\)-theory and \(C^*\)-algebras. In: Algebraic \(K\)-Theory, Number Theory, Geometry and Analysis, Lecture Notes in Mathematics, vol. 1046, pp. 55-79, Springer, Berlin (1984)
[9] Cuntz, J., Meyer, R., Rosenberg, J.: Topological and bivariant \(K\)-theory. Birkhäuser, Basel (2007) · Zbl 1139.19001
[10] Echterhoff, S.: A categorical approach to imprimitivity theorems for \(C^*\)-dynamical systems. Mem. Am. Math. Soc. 805 (2006). arXiv:math/0205322 · Zbl 1097.46042
[11] Echterhoff, S; Nest, R; Oyono-Oyono, H, Principal non-commutative torus bundles, Proc. Lond. Math. Soc., 99, 1-31, (2009) · Zbl 1176.19003
[12] Echterhoff, S; Williams, DP, Locally inner actions on \(C_0(X)\)-algebras, J. Oper. Theory, 45, 131-160, (2001) · Zbl 0994.46023
[13] Fack, T; Skandalis, G, Connes’ analogue of the thom isomorphism for the kasparov groups, Invent. Math., 64, 7-14, (1981) · Zbl 0482.46043
[14] Freed, DS; Moore, GW, Twisted equivariant matter, Ann. Henri Poincaré, 14, 1927-2023, (2013) · Zbl 1286.81109
[15] Gawedzki, K.: Bundle gerbes for topological insulators. Banach Center Publications. arXiv:1512.01028 (in press) · Zbl 1397.53044
[16] Green, P, The local structure of twisted covariance algebras, Acta Math., 140, 191-250, (1978) · Zbl 0407.46053
[17] Hannabuss, KC, Representations of nilpotent locally compact groups, J. Funct. Anal., 34, 146-165, (1979) · Zbl 0431.22007
[18] Hannabuss, KC; Mathai, V, Noncommutative principal torus bundles via parametrised strict deformation quantization, AMS Proc. Symp. Pure Math., 81, 133-148, (2010) · Zbl 1210.81062
[19] Hannabuss, KC; Mathai, V, Parametrised strict deformation quantization of \(C^*\)-bundles and Hilbert \(C^*\)-modules, J. Aust. Math. Soc., 90, 25-38, (2011) · Zbl 1218.53093
[20] Hannabuss, KC; Mathai, V; Thiang, GC, T-duality simplifies bulk-boundary correspondence: the parametrised case, Adv. Theor. Math. Phys., 20, 1193-1226, (2016) · Zbl 1359.81181
[21] Kane, CL; Mele, EJ, Quantum spin Hall effect in graphene, Phys. Rev. Lett., 95, 226801, (2005)
[22] Kane, CL; Mele, EJ, \({\mathbb{Z}}_2\) topological order and the quantum spin Hall effect, Phys. Rev. Lett., 95, 146802, (2005)
[23] Kellendonk, J; Richter, T; Schulz-Baldes, H, Edge current channels and Chern numbers in the integer quantum Hall effect, Rev. Math. Phys., 14, 87-119, (2002) · Zbl 1037.81106
[24] Kitaev, A, Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 22-30, (2009) · Zbl 1180.82221
[25] Kleinert, H.: Gauge Fields in Condensed Matter, vol. 2. World Scientific, Singapore (1989) · Zbl 0785.53061
[26] Kleppner, A, Multipliers on abelian groups, Math. Ann., 158, 11-34, (1965) · Zbl 0135.06604
[27] Lawson, H., Michelsohn, M.-L.: Spin Geometry, Princeton Mathematical Series, vol. 38. Princeton University Press, Princeton (1989) · Zbl 0688.57001
[28] Lee, ST; Packer, J, Twisted group algebras for two-step nilpotent and generalized discrete Heisenberg groups, J. Oper. Theory, 33, 91-124, (1995) · Zbl 0840.22011
[29] Marcolli, M, Solvmanifolds and noncommutative tori with real multiplication, Commun. Number Theory Phys., 2, 421-476, (2008) · Zbl 1161.58005
[30] Mathai, V; Rosenberg, J, T-duality for torus bundles via noncommutative topology, Commun. Math. Phys., 253, 705-721, (2005) · Zbl 1078.58006
[31] Mathai, V; Rosenberg, J, T-duality for torus bundles with H-fluxes via noncommutative topology, II. the high-dimensional case and the T-duality group, Adv. Theor. Math. Phys., 10, 123-158, (2006) · Zbl 1111.81131
[32] Mathai, V; Thiang, GC, T-duality of topological insulators, J. Phys. A Math. Theor. (Fast Track Commun.), 48, 42ft02, (2015) · Zbl 1330.82053
[33] Mathai, V; Thiang, GC, T-duality simplifies bulk-boundary correspondence, Commun. Math. Phys., 345, 675-701, (2016) · Zbl 1353.82068
[34] Mathai, V; Thiang, GC, T-duality simplifies bulk-boundary correspondence: some higher dimensional cases, Ann. Henri Poincaré, 17, 3399-3424, (2016) · Zbl 1354.81065
[35] Mathai, V; Thiang, GC, Differential topology of semimetals, Commun. Math. Phys., 355, 561-602, (2017) · Zbl 1376.82101
[36] Packer, J; Raeburn, I, Twisted crossed products of \(C^*\)-algebras, Math. Proc. Cambridge Philos. Soc., 106, 293-311, (1989) · Zbl 0757.46056
[37] Paschke, W, On the mapping torus of an automorphism, Proc. Am. Math. Soc., 88, 481-485, (1983) · Zbl 0541.46053
[38] Pimsner, M; Voiculescu, D, Exact sequences for \(K\)-groups and \(EXT\)-groups of certain cross-product \(C^*\)-algebras, J. Oper. Theory, 4, 93-118, (1980) · Zbl 0474.46059
[39] Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From \(K\)-Theory to Physics. Mathematical Physics Studies. Springer, Cham (2016) · Zbl 1342.82002
[40] Raeburn, I; Rosenberg, J, Crossed products of continuous-trace \(C^*\) algebras by smooth actions, Trans. Am. Math. Soc., 305, 1-45, (1988) · Zbl 0731.46035
[41] Raeburn, I., Williams, D.: Morita Equivalence and Continuous-Trace \(C^*\)-Algebras. Mathematical Surveys and Monographs. American Mathematical Society, Providence (1998) · Zbl 0922.46050
[42] Ran, Y; Zhang, Y; Vishwanath, A, One-dimensional topologically protected modes in topological insulators with lattice dislocations, Nat. Phys., 5, 298-303, (2009)
[43] Ray, MW; Ruokokoski, E; Kandel, S; Möttönen, M; Hall, DS, Observation of Dirac monopoles in a synthetic magnetic field, Nature, 505, 657-660, (2014)
[44] Rieffel, MA, Connes’ analogue for crossed products of the thom isomorphism, Contemp. Math., 10, 143-154, (1981) · Zbl 0508.46047
[45] Rieffel, MA, Strong Morita equivalence of certain transformation group \(C^*\)-algebras, Math. Ann., 222, 7-22, (1976) · Zbl 0328.22013
[46] Rørdam, M., Larsen, M., Laustsen, M.: An Introduction to \(K\)-theory for \(C^*\)-algebras. London. Math. Soc. Student Texts 19. Cambridge Univ. Press, Cambridge (2000)
[47] Rosenberg, J, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, Oper. Theory Adv. Appl., 17, 301-330, (1986) · Zbl 0587.46060
[48] Rosenberg, J, \(C^*\)-algebras, positive scalar curvature, and the Novikov conjecture-III, Topology, 25, 319-336, (1986) · Zbl 0605.53020
[49] Schröder, H.: \(K\)-Theory for Real \(C^*\)-Algebra and Applications. Pitman Research Notes in Mathemathical Series. Longman, Harlow (1993)
[50] Scott, P, The geometries of 3-manifolds, Bull. Lond. Math. Soc., 15, 401-487, (1983) · Zbl 0561.57001
[51] Takai, H, On a duality for crossed product algebras, J. Funct. Anal., 19, 25-39, (1975) · Zbl 0295.46088
[52] Thiang, GC, On the \(K\)-theoretic classification of topological phases of matter, Ann. Henri Poincaré, 17, 757-794, (2016) · Zbl 1344.81144
[53] Wegge-Olsen, N.E.: \(K\)-Theory and \(C^*\)-Algebras. Oxford University Press, Oxford (1993) · Zbl 0780.46038
[54] Wu, Y-S; Zee, A, Cocycles and magnetic monopoles, Phys. Lett. B, 152, 98-102, (1985)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.