×

Resolving the dynamics of EEG generators by multichannel recordings. (English) Zbl 1149.92323

Summary: The voltage recorded over the cortex (ECoG) or over the scalp (EEG) is generated by currents derived from many sources called “generators”. Different patterns and amplitudes are observed in aroused, sleepy, epileptic or other brain states. Differences in amplitude are generally attributed to differences in synchrony among generators. The degree of EEG synchrony is measured by the correlation between electrodes placed over different cortical regions.
We present a new way to quantitatively assess the degree of synchronization of these generators via multichannel recordings. We illustrate how situations where there are several groups of generators with different inter-group and intra-group synchronies can be analyzed. Finally, we present a way to identify the organization of groups exhibiting topographic organization. Although the model presented here is highly simplified, several methods are based on averaging activity over increasingly larger areas. These types of measurements may be applied as well to EEG and ECoG recordings.

MSC:

92C55 Biomedical imaging and signal processing
92C20 Neural biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abeles M (1982) Local cortical circuits–an electrophysiological study. Springer, Heidelberg
[2] Adey WR, Elul R (1965) Non linear relationship of spikes and waves in cortical neurons. Physiologist 8: 95
[3] Brown P (2003) Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Mov Disord 18: 357–363 · doi:10.1002/mds.10358
[4] Bullock TH, McClune MC (1989) Lateral coherence of the electroencephalogram: a new measure of brain synchrony. Electroenceph Clin Neurophysiol 73: 479–498 · doi:10.1016/0013-4694(89)90258-7
[5] Calvet J, Calvet MC, Scherrer J (1964) Etude stratigraphique de lactivite EEG spontanee. Electroenceph Clin Neurophysiol 17: 109–125 · doi:10.1016/0013-4694(64)90143-9
[6] Cooper R, Winter AL, Croe HJ, Walter WG (1965) Comparison of subcortical, cortical and scalp activity using chronically indwelling electrodes in man. Electroenceph Clin Neurophysiol 18: 217–228 · doi:10.1016/0013-4694(65)90088-X
[7] Creutzfeldt OD, Watsnabe S, Lux HD (1966) Relations between EEG phenomena and potentials of single cortical cells: spontaneous and convulsoid activity. Electroenceph Clin Neurophysiol 20: 19–37 · doi:10.1016/0013-4694(66)90137-4
[8] Creutzfeldt O (1974) Electrical activity from the neuron to the EEG and EMG. In: Creutzfeldt O (eds) Handbook of electroencephalography and clinical neurophysiology, vol 2C. Elsevier, Amsterdam, pp 5–54
[9] Ebersole JS (1997) Defining epileptogenic foci: past, present, future. J Clin Neurophysiol 14: 470–483 · doi:10.1097/00004691-199711000-00003
[10] Elul R (1972) The genesis of the EEG. Int Rev Neurobiol 15: 228–272 · doi:10.1016/S0074-7742(08)60333-5
[11] Elul R, Adey WR (1966) Instability of firing threshold and ”remote” activation in cortical neurones. Nature 212: 1424–1425 · doi:10.1038/2121424a0
[12] Evarts EV (1964) Temporal patterns of discharge of pyramidal tract neurons during sleep and waking in the monkey. J Neurophysiol 27: 152–171
[13] Grinvald A, Shoham D, Shmuel A, Glaser DE, Vanzetta I, Shtoyerman E, Slovin H, Wijnbergen C, Hildesheim R, Sterkin A, Arieli A (1999) In-vivo optical imaging of cortical architecture and dynamics. In: A. Windhorst U, Johansson H (eds) Modern techniques in neuroscience research. Springer, Heidelberg, pp 893–969
[14] Gross J et al (2004) Modulation of long range neural synchrony reflects temporal limitations of visual attention in humans. Proc Natl Acad Sci USA 101: 13050–13055 · doi:10.1073/pnas.0404944101
[15] Hubel DH, Wiesel T (1977) Functional architecture of macaque monkey cortex. Proc R Soc Lond B 198: 1–59 · doi:10.1098/rspb.1977.0085
[16] Hutchison WD et al (2004) Neuronal oscillations in the basal ganglia and movement disorders: evidence from whole animal and human recordings. J Neurosci 24: 9240–9243 · doi:10.1523/JNEUROSCI.3366-04.2004
[17] Gold C, Henze DA, Koch C, Buzsáki G (2006) On the origin of the extracellular action potential waveform. J Neurophysiol 95: 3113–3128 · doi:10.1152/jn.00979.2005
[18] Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115: 1490–1505 · doi:10.1016/j.clinph.2004.01.001
[19] Kellaway P (1979) An orderly approach to visual analysis: the parameters of the normal EEG in adults and children. In: Klass DW, Daly DD (eds) Current practice of clinical electroencephalography. Raven, New York, pp 69–147
[20] Lopesda Silva FH, Vos JE, Mooibroek J, van Rotterdam A (1980) Relative contribution of intacortical and thalamo-cortical processes in the generation of alpha rythms, revealed by partial coherence analysis. Electroenceph Clin Neurophysiol 50: 449–456 · doi:10.1016/0013-4694(80)90011-5
[21] Lopesda Silva FH (1991) Neural mechanisms underlying brain waves: from membranes to networks. Electroenceph Clin Neurophysiol 79: 81–93 · doi:10.1016/0013-4694(91)90044-5
[22] Mountcastle VB, Berman AL, Davies PW (1955) Topographic organization and modality representation in first somatic area of cat’s cerebral cortex by method of single unit analysis. Am J Physiol 183: 646
[23] Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO, Worden FG (eds) The neuroscience 4th study program. MIT, Cambridge
[24] Nunez PL (1989) Generation of human EEG by combination of long and short range neocortical interactions. Brain Topogr 1: 199–215 · doi:10.1007/BF01129583
[25] Nunez PL (2006) Electric fields of brain. In: The neurophysics of EEG, 2nd edn. pp 353–431
[26] Petsche H, Pockberger H, Rappelsberger P (1984) On the search for sources of the electroencephalogram. Neuroscience 11: 1–27 · doi:10.1016/0306-4522(84)90212-4
[27] Pfurtscheller G, Lopesda Silva FH (1999) Event related EEG/MEG synchronization and desynchronization: basic principles. Electroenceph Clin Neurophysiol 110: 1842–1857
[28] Scherrer J, Calvet J (1972) Normal and epileptic synchronization at cortical level in animal. In: Petsche H, Brazier M (eds) Mechanism of synchronization in epileptic seizures. Springer, Wien
[29] Timofeev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123: 299–336 · doi:10.1016/j.neuroscience.2003.08.051
[30] Traub RD (2003) Fast oscillations and epilepsy. Epilepsy Curr 3: 77–79 · doi:10.1046/j.1535-7597.2003.03301.x
[31] van der Stelt O, Belger A, Lieberman JA (2004) Macroscopic fast neuronal oscillation and synchrony in schizophrenia. Proc Natl Acad Sci USA 101: 17567–17568 · doi:10.1073/pnas.0407688101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.