×

A generalization of the concept of distance based on the simplex inequality. (English) Zbl 1393.39019

For a nonempty set \(X\) and for an \(n\)-distance on \(X\), that is, a function \(d: X^n \to { \mathbb{R}}_{+}\) satisfying
(i)
\(d(x_1, \dots, x_n ) \leq \sum_{j=1}^n d(x_1, \dots, x_n )^z_j\) for all \(x_1, \dots, x_n, z\in X\),
(ii)
\(d(x_1, \dots, x_n) = d(x_{\sigma(1)}, \dots, x_{\sigma(n)})\) for all \(x_1, \dots, x_n \in X\) and all \(\sigma \in S_n\),
(iii)
\(d(x_1, \dots, x_n) = 0\) if and only if \(x_1, \dots, x_n\),
the authors consider the set of real numbers \(K \in (0, 1]\) for which the condition \[ d(x_1, \dots, x_n) \leq K \sum_{j=1}^n d(x_1, \dots, x_n )^z_j , \qquad x_1, \dots, x_n, z\in X\tag{1} \] holds. Here \(d(x_1, \dots, x_n)^z_j\) is obtained from \(d(x_1, \dots, x_n)\) by setting its \(j\)-th variable to \(z\) and \(S_n\) is the symmetry group.
The authors provide natural examples of \(n\)-distances and investigate the infimum \(K^*\) of \(K\) for which the inequality (1) holds for each of them, and introduce a generalization of the concept of \(n\)-distance by replacing the sum function in \((i)\) with an arbitrary symmetric \(n\)-variable function \(g : {\mathbb{R}^n_{+}} \to {\mathbb{R}}_{+}\).
The paper is fundamental and useful to study metric spaces and inequalities.

MSC:

39B72 Systems of functional equations and inequalities
26D99 Inequalities in real analysis
55U10 Simplicial sets and complexes in algebraic topology
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Encyclopedia of Mathematics and its Applications, vol. 31. Cambridge University Press, Cambridge (2008)
[2] Aguiló, I; Martín, J; Mayor, G; Suñer, J; Valero, O, Smallest enclosing ball multidistance, Commun. Inf. Syst., 12, 185-194, (2012) · Zbl 1332.90340
[3] Boltyanski, V., Martini, H., Soltan, V.: Geometric Methods and Optimization Problems. Kluwer Academic Publishers, Dordrecht (1999) · Zbl 0933.90002 · doi:10.1007/978-1-4615-5319-9
[4] Chrystal, G, On the problem to construct the minimum circle enclosing \(n\) given points in a plane, Proc. Edinb. Math. Soc., 3, 30-33, (1884) · JFM 17.0540.01 · doi:10.1017/S0013091500037238
[5] Deza, M.M., Deza, E.: Encyclopedia of Distances, 3rd edn. Springer, Berlin (2014) · Zbl 1301.51001
[6] Deza, MM; Dutour, M, Cones of metrics, hemi-metrics and super-metrics, Ann. Eur. Acad. Sci., 1, 146-162, (2003)
[7] Deza, MM; Rosenberg, IG, \(n\)-semimetrics, Eur. J. Comb., 21, 97-806, (2000) · Zbl 0988.54029
[8] Dhage, BC, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84, 329-336, (1992) · Zbl 0782.54037
[9] Dhage, BC, On generalized metric spaces and topological structure. II, Pure Appl. Math. Sci., 40, 37-41, (1994) · Zbl 0869.54031
[10] Dhage, BC, On the continuity of mappings in \(D\)-metric spaces, Bull. Calcutta Math. Soc., 86, 503-508, (1994) · Zbl 0836.54006
[11] Dhage, BC, Generalized metric spaces and topological structure, Analele Ştiinţifice ale Universităţii “Al. I. Cuza” din Iaşi, 46, 31-38, (2000) · Zbl 0995.54042
[12] Drezner, Z; Klamroth, K; Schöbel, A; Wesolowsky, GO; Drezner, Z (ed.); Hamacher, HW (ed.), The Weber problem, 1-24, (2002), Berlin · Zbl 1041.90023 · doi:10.1007/978-3-642-56082-8
[13] Fréchet, M, Sur quelques points de calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22, 1-72, (1906) · JFM 37.0348.02 · doi:10.1007/BF03018603
[14] Hausdorff, F.: Grundzüge der Mengenlehre. Veit and Company, Leipzig (1914) · JFM 45.0123.01
[15] Jahn, T; Kupitz, YS; Martini, H; Richter, C, Minsum location extended to gauges and to convex sets, J. Optim. Theory Appl., 166, 711-746, (2015) · Zbl 1329.52010 · doi:10.1007/s10957-014-0692-6
[16] Khamsi, MA, Generalized metric spaces: a survey, J. Fixed Point Theory Appl., 17, 455-475, (2015) · Zbl 1331.54031 · doi:10.1007/s11784-015-0232-5
[17] Kiss, G., Marichal, J.-L., Teheux, B.: An extension of the concept of distance as functions of several variables. In: Proceedings of the 36th Linz Seminar on Fuzzy Set Theory (LINZ 2016), Linz, Austria, Feb. 2-6, pp. 53-56 (2016)
[18] Martín, J., Mayor, G.: Some properties of multi-argument distances and Fermat multidistance. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Methods. 13th International Conference, IPMU 2010, Dortmund, Germany, June 28-July 2, 2010. Proceedings, Part I. Communications in Computer and Information Science, vol. 80. Springer, Berlin, pp. 703-711 (2010) · Zbl 1210.54040
[19] Martín, J; Mayor, G, Multi-argument distances, Fuzzy Sets Syst., 167, 92-100, (2011) · Zbl 1214.54027 · doi:10.1016/j.fss.2010.10.018
[20] Martín, J., Mayor, G., Valero, O.: Functionally expressible multidistances. In: EUSFLAT-LFA Conference, July 2011, Aix-les-Bains, France. Advances in Intelligent Systems Research. Atlantis Press, pp. 41-46 (2011) · Zbl 1254.68260
[21] Megiddo, N, Linear-time algorithms for linear programming in \(\mathbb{R}^3\) and related problems, SIAM J. Comput., 12, 759-776, (1983) · Zbl 0521.68034 · doi:10.1137/0212052
[22] Megiddo, N, Linear programming in linear time when the dimension is fixed, J. ACM, 31, 114-127, (1984) · Zbl 0637.90064 · doi:10.1145/2422.322418
[23] Mustafa, Z., Sims, B.: Some remarks concerning \(D\)-metric spaces. In: Proceedings of the International Conference on Fixed Point Theory and Applications (Valencia, Spain, 2003), pp. 189-198. Yokohama Publishers, Yokohama (2001) · Zbl 1079.54017
[24] Mustafa, Z; Sims, B, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7, 289-297, (2006) · Zbl 1111.54025
[25] Ricci, R.G.: University of Ferrara, Italy. Personal communication (2016)
[26] Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Computer Science. Lecture Notes in Computer Science, vol. 555. Springer, Berlin, pp. 359-370 (1991) · Zbl 1332.90340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.