×

Inflationary constraints on type IIA string theory. (English) Zbl 1246.81259

Summary: We prove that inflation is forbidden in the most well-understood class of semi-realistic type IIA string compactifications: Calabi-Yau compactifications with only standard NS-NS 3-form flux, R-R fluxes, D6-branes and O6-planes at large volume and small string coupling. With these ingredients, the first slow-roll parameter satisfies \(\epsilon\geq\frac{27}{13}\) whenever \(V>0\), ruling out both inflation (including brane/anti-brane inflation) and de Sitter vacua in this limit. Our proof is based on the dependence of the 4-dimensional potential on the volume and dilaton moduli in the presence of fluxes and branes. We also describe broader classes of IIA models which may include cosmologies with inflation and/or de Sitter vacua. The inclusion of extra ingredients, such as NS5-branes and geometric or non-geometric NS-NS fluxes, evades the assumptions used in deriving the no-go theorem. We focus on NS5-branes and outline how such ingredients may prove fruitful for cosmology, but we do not provide an explicit model. We contrast the results of our IIA analysis with the rather different situation in IIB.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83E30 String and superstring theories in gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] doi:10.1103/PhysRevD.23.347 · Zbl 1371.83202 · doi:10.1103/PhysRevD.23.347
[2] doi:10.1016/0370-2693(82)91219-9 · doi:10.1016/0370-2693(82)91219-9
[3] doi:10.1103/PhysRevLett.48.1220 · doi:10.1103/PhysRevLett.48.1220
[4] doi:10.1016/0370-2693(83)90837-7 · doi:10.1016/0370-2693(83)90837-7
[6] doi:10.1086/513700 · doi:10.1086/513700
[7] doi:10.1103/PhysRevD.74.123507 · doi:10.1103/PhysRevD.74.123507
[10] doi:10.1103/PhysRevD.68.023517 · doi:10.1103/PhysRevD.68.023517
[12] doi:10.1016/j.physrep.2005.10.008 · doi:10.1016/j.physrep.2005.10.008
[13] doi:10.1103/RevModPhys.79.733 · Zbl 1205.81011 · doi:10.1103/RevModPhys.79.733
[15] doi:10.1016/j.physrep.2007.04.003 · doi:10.1016/j.physrep.2007.04.003
[16] doi:10.1103/PhysRevD.34.3069 · doi:10.1103/PhysRevD.34.3069
[17] doi:10.1103/PhysRevD.52.3548 · doi:10.1103/PhysRevD.52.3548
[19] doi:10.1103/PhysRevD.75.123511 · doi:10.1103/PhysRevD.75.123511
[26] doi:10.1016/S0370-2693(99)00132-X · Zbl 1058.81648 · doi:10.1016/S0370-2693(99)00132-X
[27] doi:10.1016/S0370-2693(01)00950-9 · Zbl 0971.83102 · doi:10.1016/S0370-2693(01)00950-9
[30] doi:10.1103/PhysRevD.70.103505 · doi:10.1103/PhysRevD.70.103505
[32] doi:10.1016/j.nuclphysb.2005.03.011 · Zbl 1207.83057 · doi:10.1016/j.nuclphysb.2005.03.011
[35] doi:10.1103/PhysRevD.70.123505 · doi:10.1103/PhysRevD.70.123505
[41] doi:10.1016/0370-2693(86)90375-8 · doi:10.1016/0370-2693(86)90375-8
[42] doi:10.1016/j.nuclphysb.2005.04.007 · Zbl 1207.81121 · doi:10.1016/j.nuclphysb.2005.04.007
[46] doi:10.1103/PhysRevD.76.103521 · doi:10.1103/PhysRevD.76.103521
[52] doi:10.1016/S0393-0440(03)00026-3 · Zbl 1029.81058 · doi:10.1016/S0393-0440(03)00026-3
[61] doi:10.1016/j.nuclphysb.2007.08.018 · Zbl 1151.81031 · doi:10.1016/j.nuclphysb.2007.08.018
[63] doi:10.1103/PhysRevD.68.046005 · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[65] doi:10.1103/PhysRevD.66.106006 · doi:10.1103/PhysRevD.66.106006
[66] doi:10.1016/0550-3213(96)00367-7 · Zbl 0925.81190 · doi:10.1016/0550-3213(96)00367-7
[67] doi:10.1016/S0550-3213(00)00373-4 · Zbl 0984.81143 · doi:10.1016/S0550-3213(00)00373-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.