×

The living heart project: a robust and integrative simulator for human heart function. (English) Zbl 1406.74491

Summary: The heart is not only our most vital, but also our most complex organ: Precisely controlled by the interplay of electrical and mechanical fields, it consists of four chambers and four valves, which act in concert to regulate its filling, ejection, and overall pump function. While numerous computational models exist to study either the electrical or the mechanical response of its individual chambers, the integrative electro-mechanical response of the whole heart remains poorly understood. Here we present a proof-of-concept simulator for a four-chamber human heart model created from computer topography and magnetic resonance images. We illustrate the governing equations of excitation-contraction coupling and discretize them using a single, unified finite element environment. To illustrate the basic features of our model, we visualize the electrical potential and the mechanical deformation across the human heart throughout its cardiac cycle. To compare our simulation against common metrics of cardiac function, we extract the pressure-volume relationship and show that it agrees well with clinical observations. Our prototype model allows us to explore and understand the key features, physics, and technologies to create an integrative, predictive model of the living human heart. Ultimately, our simulator will open opportunities to probe landscapes of clinical parameters, and guide device design and treatment planning in cardiac diseases such as stenosis, regurgitation, or prolapse of the aortic, pulmonary, tricuspid, or mitral valve.

MSC:

74L15 Biomechanical solid mechanics
92C30 Physiology (general)
74F15 Electromagnetic effects in solid mechanics
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Simulia, Dassault Systèmes, (2014)
[2] Heart disease and stroke statistics 2014 update, Circulation, 129, e28-e292, (2014)
[3] Aliev, R. R.; Panfilov, A. V., A simple two-variable model of cardiac excitation, Chaos, 7, 293-301, (1996)
[4] Berberoglu, E.; Solmaz, H. O.; Göktepe, S., Computational modeling of coupled cardiac electromechanics incorporating cardiac dysfunctions, Euro. J. Mech. A/Solids, 48, 60-73, (2014) · Zbl 1406.74492
[5] Berne, R. M.; Levy, M. N., Cardiovascular physiology, The Mosby Monograph Series, (2001)
[6] Bonet, J.; Wood, R. D., Nonlinear continuum mechanics for finite element analysis, (1997), Cambridge University Press · Zbl 0891.73001
[7] Braunwald, E., Heart disease: A textbook of cardiovascular medicine, (1997), W.B. Saunders Company
[8] Burghoff, D., Pressure-volume loops in clinical research, J. Am. Coll. Cardiol., 62, 1173-1176, (2013)
[9] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electrophysiology, Comp. Meth. Biomech. Biomed. Eng., 15, 645-656, (2012)
[10] Dal, H.; Göktepe, S.; Kaliske, M.; Kuhl, E., A fully implicit finite element method for bidomain models of cardiac electromechanics, Comp. Meth. Appl. Mech. Eng., 253, 323-336, (2013) · Zbl 1297.74077
[11] Eriksson, T. S.E.; Prassl, A. J.; Plank, G.; Holzapfel, G. A., Modeling the dispersion in electromechanically coupled myocardium, Int. J. Num. Meth. Biomed. Eng., 29, 1267-1284, (2013)
[12] Fitzhugh, R., Impulses and physiological states in theoretical models of nerve induction, Biophys. J., 1, 455-466, (1961)
[13] Frank, O., Die grundform des arteriellen pulses, Ztg. für Biol., 37, 483-586, (1899)
[14] Gessat, M.; Hopf, R.; Pollok, T.; Russ, C.; Frauenfelder, T.; Sundermann, S. H.; Hirsch, S.; Mazza, E.; Szekely, G.; Falk, V., Image-based mechanical analysis of stent deformation: concept and exemplary implementation for aortic valve stents, IEEE Trans. Biomed. Eng., 61, 4-15, (2014)
[15] Göktepe, S.; Kuhl, E., Computational modeling of electrophysiology: a novel finite element approach, Int. J. Num. Meth. Eng., 79, 156-178, (2009) · Zbl 1171.92310
[16] Göktepe, S.; Kuhl, E., Electromechanics of the heart - a unified approach to the strongly coupled excitation-contraction problem, Comp. Mech., 45, 227-243, (2010) · Zbl 1183.78031
[17] Göktepe, S.; Wong, J.; Kuhl, E., Atrial and ventricular fibrillation - computational simulation of spiral waves in cardiac tissue, Arch. Appl. Mech., 80, 569-580, (2010) · Zbl 1271.74319
[18] Göktepe, S.; Acharya, S. N.S.; Wong, J.; Kuhl, E., Computational modeling of passive myocardium, Int. J. Num. Meth. Biomed. Eng., 27, 1-12, (2011) · Zbl 1207.92006
[19] Göktepe, S.; Menzel, A.; Kuhl, E., The generalized Hill model: a kinematic approach towards active muscle contraction, J. Mech. Phys. Solids., (2014) · Zbl 1328.74063
[20] Gonzales, M. J.; Sturgeon, G.; Krishnamurthy, A.; Hake, J.; Jonas, R.; Stark, P.; Rappel, W. J.; Narayan, S. M.; Zhang, Y.; Segars, W. P.; McCulloch, A. D., A three-dimensional finite element model of human arterial anatomy: new methods for cubic Hermite meshes with extraordinary ventricles, Med. Im. Anal., 17, 525-537, (2013)
[21] de Hart, J.; Peters, G. W.M.; Schreurs, P. J.G.; Baaijens, F. P.T., A three-dimensional computational analysis of fluid-structure interaction in the aortic valve, J. Biomech., 36, 103-112, (2003)
[22] Holzapfel, G. A., Nonlinear solid mechanics: a continuum approach for engineering, (2000), John Wiley & Sons · Zbl 0980.74001
[23] Holzapfel, G. A.; Ogden, R. W., Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Phil. Trans. A, 367, 3445-3475, (2009) · Zbl 1185.74060
[24] Hunter, P. J.; Pullan, A. J.; Smaill, B. H., Modeling total heart function, Ann. Rev. Biomed. Eng., 5, 147-177, (2003)
[25] Hurtado, D. E.; Kuhl, E., Computational modeling of electrocardiograms: repolarization and T-wave polarity in the human heart, Comp. Meth. Biomech. Biomed. Eng., 17, 986-996, (2014)
[26] Hurtado, D. E.; Henao, D., Gradient flows and variational principles for cardiac electrophysiology: toward efficient and robust numerical simulations of the electrical activity of the heart, Comp. Meth. Appl. Mech. Eng., 273, 238-254, (2014) · Zbl 1296.76186
[27] Keener, J.; Sneyd, J., Mathematical physiology, (2004), Springer Science and Business Media · Zbl 0913.92009
[28] Klepach, D.; Lee, L. C.; Wenk, J. F.; Ratcliffe, M. B.; Zohdi, T. I.; Navia, J. L.; Kassab, G. S.; Kuhl, E.; Guccione, J. M., Growth and remodeling of the left ventricle: a case study of myocardial infarction and surgical ventricular restoration, Mech. Res. Comm., 42, 134-141, (2012)
[29] Kotikanyadanam, M.; Göktepe, S.; Kuhl, E., Computational modeling of electrocardiograms - a finite element approach towards cardiac excitation, Int. J. Num. Meth. Biomed. Eng., 26, 524-533, (2010) · Zbl 1187.92062
[30] Krishnamoorthi, S.; Sarkar, M.; Klug, W. S., Numerical quadrature and operator splitting in finite element methods for cardiac electrophysilogy, Int. J. Num. Meth. Biomed. Eng., 29, 1243-1266, (2013)
[31] Kumar, V.; Abbas, A. K.; Fausto, N., Robbins and cotran pathologic basis of disease, (2005), Elsevier Saunders
[32] Lee, L. C.; Wenk, J. F.; Zhong, L.; Klepach, D.; Zhang, Z. H.; Ge, L.; Ratcliffe, M. B.; Zohdi, T. I.; Hsu, E.; Navia, J. L.; Kassab, G. S.; Guccione, J. M., Analysis of patient-specific surgical ventricular restoration: importance of an ellipsoidal left ventricular geometry for diastolic and systolic function, J. Appl. Phys., 115, 136-144, (2013)
[33] Markhasin, V. S.; Solovyova, O.; Katsnelson, L. B.; Protsenko, Y.; Kohl, P.; Noble, D., Mechano-electric interactions in heterogeneous myocardium: development of fundamental experimental and theoretical models, Prog. Biophys. Mol. Biol., 82, 207-220, (2003)
[34] Murtada, S. C.; Arner, A.; Holzapfel, G. A., Experiments and mechanochemical modeling of smooth muscle contraction: significance of filament overlap, J. Theor. Bio, 297, 176-186, (2012) · Zbl 1336.92034
[35] Nagumo, J.; Arimoto, S.; Yoshizawa, S., An active pulse transmission line simulating nerve axon, Proc. Inst. Radio Eng., 50, 2061-2070, (1962)
[36] Nash, M. P.; Panfilov, A. V., Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias, Progr. Biophys. Mol. Bio, 85, 501-522, (2004)
[37] Pezzuto, S.; Ambrosi, D.; Quarteroni, A., An orthotropic active-strain numerical model for the mechanics of the myocardium, Euro. J. Mech. A/Solids, 48, 83-96, (2014) · Zbl 1406.74502
[38] Rausch, M. K.; Kuhl, E., On the effect of prestrain and residual stress in thin biological membranes, J. Mech. Phys. Solids, 61, 1955-1969, (2013)
[39] Robers, W. J.; Shapiro, E. P.; Weiss, J. L.; Buchalter, M. B.; Rademakers, F. E.; Weisfeldt, M. L.; Zerhouni, E. A., Quantification of and correlation for left-ventricular systolic long-axis shortening by magnetic-resonance tissue tagging and slice isolation, Circulation, 84, 721-731, (1991)
[40] Rossi, S.; Ruiz-Baier, R.; Pavarino, L.; Quarteroni, A., Orthotropic active strain models for the numerical simulation of cardiac biomechanics, Int. J. Num. Meth. Biomed. Eng., 28, 761-788, (2012)
[41] Rossi, S.; Lassila, T.; Ruiz-Baier, R.; Sequeira, A.; Quarteroni, A., Thermodynamically consistent orthotropic activation model capturing ventricular systolic wall thickening in cardiac electromechanics, Euro. J. Mech. A/Solids, 48, 129-142, (2014) · Zbl 1406.74503
[42] Shmukler, M., Density of blood. the physics factbook, (2004)
[43] Smith, B. W., Minimal haemodynamic modelling of the heart and circulation for clinical application, (2004), University of Canterbury Christchurch, New Zealand, (dissertation)
[44] Trayanova, N. A., Whole-heart modeling: applications to cardiac electrophysiology and electromechanics, Circ. Res., 108, 113-128, (2011)
[45] Trayanova, N. A.; Constantino, J.; Gurev, V., Electromechanical models of the ventricles, Am. J. Phys. Heart Circ. Phys., 301, H279-H286, (2011)
[46] Tsamis, A.; Bothe, W.; Kvitting, J. P.; Swanson, J. C.; Miller, D. C.; Kuhl, E., Active contraction of cardiac muscle: in vivo characterization of mechanical activation sequences in the beating heart, J. Mech. Behav. Biomed. Mat., 4, 1167-1176, (2011)
[47] Walker, J. C.; Ratcliffe, M. B.; Zhang, P.; Wallace, A. W.; Fata, B.; Hsu, E. W.; Saloner, D.; Guccione, J. M., MRI-based finite-element analysis of left ventricular aneurysm, Am. J. Physiol. Heart Circ. Physiol., 289, H692-H700, (2005)
[48] Wong, J.; Göktepe, S.; Kuhl, E., Computational modeling of chemo-electro-mechanical coupling: a novel implicit monolithic finite element approach, Int. J. Num. Meth. Biomed. Eng., 29, 1104-1133, (2013)
[49] Wong, J.; Kuhl, E., Generating fiber orientation maps in human heart models using Poisson interpolation, Comp. Meth. Biomech. Biomed. Eng., 17, 1217-1226, (2014)
[50] Zygote Media Group, Inc, The zygote solid 3D heart model, (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.