×

zbMATH — the first resource for mathematics

Gauge-theoretic invariants for topological insulators: a bridge between Berry, Wess-Zumino, and Fu-Kane-Mele. (English) Zbl 1370.35093
Summary: We establish a connection between two recently proposed approaches to the understanding of the geometric origin of the Fu-Kane-Mele invariant \(\mathrm {FKM}\in \mathbb {Z}_2\), arising in the context of two-dimensional time-reversal symmetric topological insulators. On the one hand, the \(\mathbb {Z}_2\) invariant can be formulated in terms of the Berry connection and the Berry curvature of the Bloch bundle of occupied states over the Brillouin torus. On the other, using techniques from the theory of bundle gerbes, it is possible to provide an expression for \(\mathrm {FKM}\) containing the square root of the Wess-Zumino amplitude for a certain \(U(N)\)-valued field over the Brillouin torus. We link the two formulas by showing directly the equality between the above-mentioned Wess-Zumino amplitude and the Berry phase, as well as between their square roots. An essential tool of independent interest is an equivariant version of the adjoint Polyakov-Wiegmann formula for fields \(\mathbb {T}^2 \rightarrow U(N)\), of which we provide a proof employing only basic homotopy theory and circumventing the language of bundle gerbes.

MSC:
35J10 Schrödinger operator, Schrödinger equation
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry
81Q70 Differential geometric methods, including holonomy, Berry and Hannay phases, Aharonov-Bohm effect, etc. in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bestwick, AJ; Fox, EJ; Kou, X; Pan, L; Wang, KL; Goldhaber-Gordon, D, Precise quantization of the anomalous Hall effect near zero magnetic field, Phys. Rev. Lett., 114, 187201, (2015)
[2] Bott, R; Seeley, R, Some remarks on the paper of callias, Commun. Math. Phys., 62, 235-245, (1978) · Zbl 0409.58019
[3] Berry, MV, Quantal phase factors accompanying adiabatic changes, Proc. R. Soc. Lond. A, 392, 45, (1984) · Zbl 1113.81306
[4] Bredon, G.E.: Equivariant cohomology theories. No. 34 in Lecture Notes in Mathematics. Springer, Berlin (1967) · Zbl 0162.27202
[5] Carpentier, D; Delplace, P; Fruchart, M; Gawedzki, K; Tauber, C, Construction and properties of a topological index for periodically driven time-reversal invariant 2D crystals, Nucl. Phys. B, 896, 779, (2015) · Zbl 1331.82065
[6] Chang, CZ; etal., High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator, Nat. Mater., 14, 473, (2015)
[7] Chevalley, C; Eilenberg, S, Cohomology theory of Lie groups and Lie algebras, Trans. Am. Math. Soc., 63, 85-124, (1948) · Zbl 0031.24803
[8] Cornean, H; Monaco, D; Teufel, S, Wannier functions and \(\mathbb{Z}_2\) invariants in time-reversal symmetric topological insulators, Rev. Math. Phys., 29, 1730001, (2017) · Zbl 1370.81081
[9] Davis, J.F., Kirk, P.: Lecture notes in Algebraic Topology. No. 35 in Graduate Studies in Mathematics. American Mathematical Society, Providence (RI) (2001)
[10] Nittis, G; Gomi, K, Classification of “quaternionic” Bloch bundles, Commun. Math. Phys., 339, 1-55, (2015) · Zbl 1326.57047
[11] Dubrovin, B.A., Novikov, S.P., Fomenko, A.T.: Modern Geometry—Methods and Applications. Part II: The Geometry and Topology of Manifolds. No. 93 in Graduate Texts in Mathematics. Springer, New York (1985) · Zbl 1375.81102
[12] Felder, G; Gawȩdzki, K; Kupiainen, A, Spectra of Wess-Zumino-Witten models with arbitrary simple groups, Commun. Math. Phys., 117, 127-158, (1988) · Zbl 0642.22005
[13] Fiorenza, D; Monaco, D; Panati, G, \(\mathbb{Z}_{2}\) invariants of topological insulators as geometric obstructions, Commun. Math. Phys., 343, 1115-1157, (2016) · Zbl 1346.81158
[14] Fiorenza, D., Sati, H., Schreiber, U.: A higher stacky perspective on Chern-Simons theory. In : Calaque, D., Strobl, T. (eds.), Mathematical Aspects of Quantum Field Theories, pp. 153-211. Mathematical Physics Studies. Springer, Basel (2015) · Zbl 1315.81091
[15] Fromont, P; Gawȩdzki, K; Tauber, C, Global gauge anomalies in coset models of conformal field theory, Commun. Math. Phys., 328, 1371-1400, (2014) · Zbl 1292.81124
[16] Fu, L; Kane, CL, Time reversal polarization and a \(Z_2\) adiabatic spin pump, Phys. Rev. B, 74, 195312, (2006)
[17] Gawȩdzki, K.: Topological actions in two-dimensional quantum field theories. In : ‘t Hooft, G., Jaffe, A., Mack, G., Mitter, P.K., Stora, R. (eds.), Nonperturbative Quantum Field Theory, pp. 101-141. Springer, New York (1988)
[18] Gawȩdzki, K.: Conformal field theory: a case study. Preprint available at arXiv:hep-th/9904145 (1999) · Zbl 1346.81158
[19] Gawȩdzki, K.: Bundle gerbes for topological insulators. Preprint available at arXiv:1512.01028 (2015) · Zbl 0063.02919
[20] Gawȩdzki, K; Reis, N, WZW branes and gerbes, Rev. Math. Phys., 14, 1281-1334, (2002) · Zbl 1033.81067
[21] Gawȩdzki, K; Waldorf, K, Polyakov-wiegmann formula and multiplicative gerbes, J. High Energy Phys., 2009, 073, (2009)
[22] Göckeler, M., Schücker, I.: Differential Geometry, Gauge Theories, and Gravity. Cambridge University Press, Cambridge (1987) · Zbl 0649.53001
[23] Graf, G.M.: Aspects of the integer quantum Hall effect. In : Gesztesy, F., Deift, P., Galvez, C., Perry, P., Schlag, W. (eds.), Spectral Theory and Mathematical Physics: A Festschrift in Honor of Barry Simon’s 60th Birthday, pp. 429-442. No. 76 in Proceedings of Symposia in Pure Mathematics. American Mathematical Society, Providence (RI) (2007) · Zbl 1370.81081
[24] Graf, GM; Porta, M, Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 851-895, (2013) · Zbl 1291.82120
[25] Haldane, FDM, Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”, Phys. Rev. Lett., 61, 2017, (1988)
[26] Hua, L-K, On the theory of automorphic functions of a matrix variable I: geometrical basis, Am. J. Math., 66, 470-488, (1944) · Zbl 0063.02919
[27] Husemoller, D.: Fibre Bundles, 3rd edition. No. 20 in Graduate Texts in Mathematics. Springer, New York (1994) · Zbl 0794.55001
[28] Kane, CL; Mele, EJ, \(Z_2\) topological order and the quantum spin Hall effect, Phys. Rev. Lett., 95, 146802, (2005)
[29] Karp, RL; Mansouri, F; Rno, JS, Product integral representations of Wilson lines and Wilson loops and non-abelian Stokes theorem, Turk. J. Phys., 24, 365-384, (2000)
[30] Kennedy, R; Guggenheim, Ch, Homotopy theory of strong and weak topological insulators, Phys. Rev. B, 91, 245148, (2015)
[31] Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd edition. No. 140 in Progress in Mathematics. Birkhäuser, Boston (2005) · Zbl 1075.22501
[32] Lee, J.M.: Introduction to Smooth Manifolds. No. 218 in Graduate Text in Mathematics. Springer, New York (2003)
[33] Lee, SS; Ryu, S, Many-body generalization of the \(Z_2\) topological invariant for the quantum spin Hall effect, Phys. Rev. Lett., 100, 186807, (2008)
[34] Monaco, D.: Chern and Fu-Kane-Mele Invariants as Topological Obstructions. To appear in INdAM-Springer Volume Advances in Quantum Mechanics (in preparation)
[35] Monaco, D; Panati, G, Symmetry and localization in periodic crystals: triviality of Bloch bundles with a fermionic time-reversal symmetry, Acta App. Math., 137, 185-203, (2015) · Zbl 1318.82045
[36] Moore, JE; Balents, L, Topological invariants of time-reversal-invariant band structures, Phys. Rev. B, 75, 121306, (2007)
[37] Nenciu, G, Dynamics of band electrons in electric and magnetic fields: rigorous justification of the effective Hamiltonians, Rev. Mod. Phys., 63, 91-127, (1991)
[38] Panati, G, Triviality of Bloch and Bloch-Dirac bundles, Ann. Henri Poincaré, 8, 995-1011, (2007) · Zbl 1375.81102
[39] Polyakov, AM; Wiegmann, PB, Goldstone fields in two dimensions with multivalued actions, Phys. Lett. B, 141, 223-228, (1984)
[40] Prodan, E, Robustness of the spin-Chern number, Phys. Rev. B, 80, 125327, (2009)
[41] Prodan, E, Manifestly gauge independent formulations of the \(\mathbb{Z}_2\) invariants, Phys. Rev. B, 83, 235115, (2011)
[42] Schulz-Baldes, H, \(\mathbb{Z}_2\) indices and factorization properties of odd symmetric Fredholm operators, Doc. Math., 20, 1481-1500, (2015) · Zbl 1341.47014
[43] Simon, B, Holonomy, the quantum adiabatic theorem, and berry’s phase, Phys. Rev. Lett., 51, 2167, (1983)
[44] Witten, E, Non-abelian bosonization in two dimensions, Commun. Math. Phys., 92, 455-472, (1984) · Zbl 0536.58012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.