×

Dispersion controlled by permeable surfaces: surface properties and scaling. (English) Zbl 1445.76078

Summary: Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel-porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of the surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.

MSC:

76S05 Flows in porous media; filtration; seepage
76M45 Asymptotic methods, singular perturbations applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Al-Chidiac, M.; Mirbod, P.; Andreopoulos, Y.; Weinbaum, S., Dynamic compaction of soft compressible porous materials: experiments on air – solid phase interaction, J. Porous Media, 12, 11, 1019-1035, (2009) · doi:10.1615/JPorMedia.v12.i11.10
[2] Aris, R., On the dispersion of a solute in a fluid flowing through a tube, Proc. R. Soc. Lond., 235, 1200, 67-77, (1956) · doi:10.1098/rspa.1956.0065
[3] Battiato, I., Self-similarity in coupled Brinkman/Navier-Stokes flows, J. Fluid Mech., 699, 94-114, (2012) · Zbl 1248.76134 · doi:10.1017/jfm.2012.85
[4] Battiato, I., Effective medium theory for drag-reducing micro-patterned surfaces in turbulent flows, Eur. Phys. J. E, 37, 19, (2014) · doi:10.1140/epje/i2014-14019-0
[5] Battiato, I.; Bandaru, P.; Tartakovsky, D. M., Elastic response of carbon nanotube forests to aerodynamic stresses, Phys. Rev. Lett., 105, (2010)
[6] Battiato, I.; Rubol, S., Single-parameter model of vegetated aquatic flows, Water Resour. Res., 50, 8, 6358-6369, (2014) · doi:10.1002/2013WR015065
[7] Battiato, I.; Vollmer, J., Flow-induced shear instabilities of cohesive granulates, Phys. Rev. E, 86, (2012) · doi:10.1103/PhysRevE.86.031301
[8] Beavers, G. S.; Joseph, D. D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 1, 197-207, (1967) · doi:10.1017/S0022112067001375
[9] Bodin, J.; Delay, F.; De Marsily, G., Solute transport in a single fracture with negligible matrix permeability. 1. Fundamental mechanisms, Hydrogeol. J., 11, 4, 418-433, (2003) · doi:10.1007/s10040-003-0268-2
[10] Boso, F.; Battiato, I., Homogenizability conditions of multicomponent reactive transport processes, Adv. Water Resour., 62, 254-265, (2013) · doi:10.1016/j.advwatres.2013.07.014
[11] Bouquet, L.; Lauga, E., A smooth future?, Nat. Mater., 10, 334-337, (2011) · doi:10.1038/nmat2994
[12] Brenner, H., Transport Processes in Porous Media, (1987), McGraw-Hill
[13] Cui, J.; Daniel, D.; Grinthal, A.; Lin, K.; Aizenberg, J., Dynamic polymer systems with self-regulated secretion for the control of surface properties and material healing, Nat. Mater., 14, 8, 790-795, (2015) · doi:10.1038/nmat4325
[14] Davis, A. M. J.; Lauga, E., Hydrodynamic friction of fakir-like superhydrophobic surfaces, J. Fluid Mech., 661, 402-411, (2010) · Zbl 1205.76079 · doi:10.1017/S0022112010003460
[15] Deck, C. P.; Ni, C.; Vecchio, K. S.; Bandaru, P. R., The response of carbon nanotube ensembles to fluid flow: applications to mechanical property measurement and diagnostics, J. Appl. Phys., 106, 7, (2009)
[16] Dejam, M.; Hassanzadeh, H.; Chen, Z., Shear dispersion in a fracture with porous walls, Adv. Water Resour., 74, 14-25, (2014) · doi:10.1016/j.advwatres.2014.08.005
[17] Ghisalberti, M., Obstructed shear flows: similarities across systems and scales, J. Fluid Mech., 641, 51-61, (2009) · Zbl 1183.76754 · doi:10.1017/S0022112009992175
[18] Gilroy, S.; Jones, D. L., Through form to function: root hair development and nutrient uptake, Trends Plant Sci., 5, 56-60, (2000) · doi:10.1016/S1360-1385(99)01551-4
[19] Goharzadeh, A.; Khalili, A.; Jørgensen, B. B., Transition layer thickness at a fluid – porous interface, Phys. Fluids, 17, 5, (2005) · Zbl 1187.76185 · doi:10.1063/1.1894796
[20] Gray, W. G.; Miller, C. T., Thermodynamically constrained averaging theory approach for modeling flow and transport phenomena in porous medium systems: 1. Motivation and overview, Adv. Water Resour., 28, 2, 161-180, (2005) · doi:10.1016/j.advwatres.2004.09.005
[21] Griffiths, I. M.; Howell, P. D.; Shipley, R. J., Control and optimization of solute transport in a thin porous tube, Phys. Fluids, 25, 3, (2013) · Zbl 1315.76038 · doi:10.1063/1.4795545
[22] Gruenberger, A.; Probst, C.; Heyer, A.; Wiechert, W.; Frunzke, J.; Kohlheyer, D., Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation, J. Vis. Exp., 82, (2013)
[23] Horne, R. N.; Rodriguez, F., Dispersion in tracer flow in fractured geothermal systems, Geophys. Res. Lett., 10, 4, 289-292, (1983) · doi:10.1029/GL010i004p00289
[24] Hornung, U., Homogenization and Porous Media, (1997), Springer · Zbl 0872.35002 · doi:10.1007/978-1-4612-1920-0
[25] Hou, X.; Hu, Y.; Grinthal, A.; Khan, M.; Aizenberg, J., Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour, Nature, 519, 70-73, (2015) · doi:10.1038/nature14253
[26] Kazezyılmaz-Alhan, C. M., Analytical solutions for contaminant transport in streams, J. Hydrol., 348, 3, 524-534, (2008) · doi:10.1016/j.jhydrol.2007.10.022
[27] Lauga, E.; Stone, H. A., Effective slip in pressure-driven Stokes flow, J. Fluid Mech., 489, 55-77, (2003) · Zbl 1064.76028 · doi:10.1017/S0022112003004695
[28] Le Bars, M.; Worster, M. G., Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech., 550, 149-173, (2006) · Zbl 1097.76066 · doi:10.1017/S0022112005007998
[29] Li, X. M.; Reinhoudt, D.; Crego-Calama, M., What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces, Chem. Soc. Rev., 36, 1350-1368, (2007) · doi:10.1039/b602486f
[30] Liu, C.; Shang, J.; Kerisit, S.; Zachara, J. M.; Zhu, W., Scale-dependent rates of uranyl surface complexation reaction in sediments, Geochim. Cosmochim. Acta, 105, 326-341, (2013) · doi:10.1016/j.gca.2012.12.003
[31] Lloyd, F. E., The Carnivorous Plants, (1942), Read Books Ltd
[32] Marmur, A., The lotus effect: superhydrophobicity and metastability, Langmuir, 20, 3517-3519, (2004) · doi:10.1021/la036369u
[33] Marschner, H.; Dell, B., Nutrient uptake in mycorrhizal symbiosis, Plant Soil, 159, 1, 89-102, (1994)
[34] Maruf, S. H.; Rickman, M.; Wang, L. IV; Mersch, J.; Greenberg, A. R.; Pellegrino, J.; Ding, Y., Influence of sub-micron surface patterns on the deposition of model proteins during active filtration, J. Membr. Sci., 444, 420-428, (2013) · doi:10.1016/j.memsci.2013.05.060
[35] Maruf, S. H.; Wang, L.; Greenberg, A. R.; Pellegrino, J.; Ding, Y., Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes, J. Membr. Sci., 428, 598-607, (2013) · doi:10.1016/j.memsci.2012.10.059
[36] Mikelic, A.; Devigne, V.; Duijn, C. J. Van, Rigorous upscaling of the reactive flow through a pore, under dominant Peclet and Damkohler numbers, SIAM J. Math. Anal., 38, 4, 1262-1287, (2006) · Zbl 1120.35007 · doi:10.1137/050633573
[37] Nepf, H.; Ghisalberti, M.; White, B.; Murphy, E., Retention time and dispersion associated with submerged aquatic canopies, Water Resour. Res., 43, 4, (2007) · doi:10.1029/2006WR005362
[38] Nepf, H. M., Flow and transport in regions with aquatic vegetation, Annu. Rev. Fluid Mech., 44, 1, 123-142, (2012) · Zbl 1350.76056 · doi:10.1146/annurev-fluid-120710-101048
[39] Nikora, V.; Goring, D.; Mcewan, I.; Griffiths, G., Spatially averaged open-channel flow over rough bed, J. Hydraul. Engng, (2001)
[40] Ogata, A.; Banks, R. B., A solution of the differential equation of longitudinal dispersion in porous media, US Geol. Surv. Prof. Pap, (1961)
[41] Ou, J.; Perot, B.; Rothstein, J. P., Laminar drag reduction in microchannels using ultrahydrophobic surfaces, Phys. Fluids, 16, 12, 4635-4643, (2004) · Zbl 1187.76393 · doi:10.1063/1.1812011
[42] Papke, A.; Battiato, I., A reduced complexity model for dynamic similarity in obstructed shear flows, Geophys. Res. Lett., 40, 1-5, (2013) · doi:10.1002/grl.50759
[43] Reichert, P.; Wanner, O., Enhanced one-dimensional modeling of transport in rivers, J. Hydraul. Engng, 117, 9, 1165-1183, (1991) · doi:10.1061/(ASCE)0733-9429(1991)117:9(1165)
[44] Rothstein, J. P., Slip on superhydrophobic surfaces, Annu. Rev. Fluid Mech., 42, 89-109, (2010) · doi:10.1146/annurev-fluid-121108-145558
[45] Roubinet, D.; Dreuzy, J.-R.; Tartakovsky, D. M., Semi-analytical solutions for solute transport and exchange in fractured porous media, Water Resour. Res., 48, 1, (2012) · doi:10.1029/2011WR011168
[46] Scholz, I.; Bückins, M.; Dolge, L.; Erlinghagen, T.; Weth, A.; Hischen, F.; Mayer, J.; Hoffmann, S.; Riederer, M.; Riedel, M., Slippery surfaces of pitcher plants: nepenthes wax crystals minimize insect attachment via microscopic surface roughness, J. Expl Biol., 213, 1115-1125, (2010) · doi:10.1242/jeb.035618
[47] Stroock, A. D.; Dertinger, S. K. W.; Ajdari, A.; Mezic, I.; Stone, H. A.; Whitesides, G. M., Chaotic mixer for microchannels, Science, 295, 647-651, (2002) · doi:10.1126/science.1066238
[48] Stroock, A. D.; Whitesides, G. M., Controlling flows in microchannels with patterned surface charge and topography, Acc. Chem. Res., 36, 597-604, (2003) · doi:10.1021/ar0202870
[49] Sudicky, E. A.; Frind, E. O., Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures, Water Resour. Res., 18, 6, 1634-1642, (1982) · doi:10.1029/WR018i006p01634
[50] Tang, D. H.; Frind, E. O.; Sudicky, E. A., Contaminant transport in fractured porous media: analytical solution for a single fracture, Water Resour. Res., 17, 3, 555-564, (1981) · doi:10.1029/WR017i003p00555
[51] Taylor, G., Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. R. Soc. Lond., 219, 186-203, (1953) · doi:10.1098/rspa.1953.0139
[52] Valdes-Parada, F. J.; Ochoa-Tapia, J. A.; Alvarez-Ramirez, J., Validity of the permeability Carman-Kozeny equation: a volume averaging approach, Physica A, 388, 6, 789-798, (2009) · doi:10.1016/j.physa.2008.11.024
[53] Weinbaum, S.; Zhang, X.; Han, Y.; Vink, H.; Cowin, S. C., Mechanotransduction and flow across the endothelial glycocalyx, Proc. Natl Acad. Sci., 100, 13, 7988-7995, (2003) · doi:10.1073/pnas.1332808100
[54] Weinman, S. T.; Husson, S. M., Influence of chemical coating combined with nanopatterning on alginate fouling during nanofiltration, J. Membr. Sci., 513, 146-154, (2016) · doi:10.1016/j.memsci.2016.04.025
[55] Whitaker, S., The Method of Volume Averaging, (1999), Kluwer · doi:10.1007/978-94-017-3389-2
[56] Wu, Y.-S.; Ye, M.; Sudicky, E. A., Fracture-flow-enhanced matrix diffusion in solute transport trhough fractured porous media, Trans. Porous Med., 81, 1, 21-34, (2010) · doi:10.1007/s11242-009-9383-4
[57] Ybert, C.; Barentin, C.; Cottin-Bizonne, C.; Joseph, P.; Bocquet, L., Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries, Phys. Fluids, 19, (2007) · Zbl 1182.76848 · doi:10.1063/1.2815730
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.