×

zbMATH — the first resource for mathematics

Maximum entropy power spectrum estimation for 2-D multirate systems. (English) Zbl 1252.94031
Summary: This paper presents maximum entropy power spectrum estimation of a 2-D information signal given that multirate low-resolution observations are available. Since the exact calculation of the 2-D maximum entropy power spectrum is not practical, we propose an efficient method utilizing slices in the 2-D discrete Fourier transform (DFT) domain and the duality in convex programming. We investigate the properties of our solution and provide numerical examples to demonstrate the performance of the new method.

MSC:
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
62M15 Inference from stochastic processes and spectral analysis
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
94A17 Measures of information, entropy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A.N. Amini, M.S. Takyar, T.T. Georgiou, A homotopy approach for multirate spectrum estimation, in Proc. 31st IEEE ICASSP, vol. 3, May 2006, pp. 532–535
[2] A. Antoniou, W.S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, New York, 2007) · Zbl 1128.90001
[3] J.P. Burg, Maximum entropy spectral analysis. Ph.D. dissertation, Stanford University, California (1975)
[4] M.A. Ghouse, 2D grid architectures for the DFT and the 2D DFT. J. VLSI Signal Process. 5(1), 57–74 (1993) · Zbl 0807.65143 · doi:10.1007/BF01880272
[5] H. Greenspan, Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009) · Zbl 05534258 · doi:10.1093/comjnl/bxm075
[6] O.S. Jahromi, B.A. Francis, R.H. Kwong, Spectrum estimation using multirate observations. IEEE Trans. Signal Process. 52(7), 1878–1890 (2004) · Zbl 1369.94183 · doi:10.1109/TSP.2004.828941
[7] O.S. Jahromi, B.A. Francis, R.H. Kwong, Relative information of multi-rate sensors. Inf. Fusion 5(2), 119–129 (2004) · Zbl 05422878 · doi:10.1016/j.inffus.2004.01.003
[8] O.S. Jahromi, Multirate Statistical Signal Processing (Springer, Dordrecht, 2007) · Zbl 1141.94002
[9] E.T. Jaynes, On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982) · doi:10.1109/PROC.1982.12425
[10] F. Kamalabadi, Multidimensional image reconstruction in astronomy: A unified approach based on regularization and state estimation concepts. IEEE Signal Process. Mag. 27(1), 86–96 (2010) · doi:10.1109/MSP.2009.934717
[11] A. Kizilkaya, A.H. Kayran, Computation of the exact Cramer–Rao lower bound for 2-D ARMA parameter estimation-I: The quarter-plane case. IEEE Trans. Circuits Syst. II 53(1), 23–27 (2006) · doi:10.1109/TCSII.2005.854314
[12] S.W. Lang, J.H. McClellan, Multidimensional MEM spectral estimation. IEEE Trans. Acoust., Speech, Signal Process. 30(6), 880–887 (1982) · Zbl 0562.93070 · doi:10.1109/TASSP.1982.1163967
[13] Y. Liang, T. Chen, Q. Pan, Multi-rate stochastic H filtering for networked multi-sensor fusion. Automatica 46(2), 437–444 (2010) · Zbl 1205.93148 · doi:10.1016/j.automatica.2009.11.019
[14] J.S. Lim, N.A. Malik, A new algorithm for two-dimensional maximum entropy power spectrum estimation. IEEE Trans. Acoust., Speech, Signal Process. 29(3), 401–413 (1981) · Zbl 0524.65095 · doi:10.1109/TASSP.1981.1163583
[15] J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, New Jersey, 1990)
[16] D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming (Springer, New York, 2008) · Zbl 1207.90003
[17] S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003) · doi:10.1109/MSP.2003.1203207
[18] A.H. Sayed, Adaptive Filters (Wiley, New Jersey, 2008)
[19] J.W. Scrofani, Theory of multirate signal processing with application to signal and image reconstruction. Ph.D. dissertation, Naval Postgraduate School, California (2005)
[20] N. Srinivasa, K.R. Ramakrishnan, K. Rajgopal, On two-dimensional maximum entropy spectral estimation. IEEE Trans. Signal Process. 40(1), 241–244 (1992) · doi:10.1109/78.157205
[21] G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, Wellesley, 1996)
[22] A.K. Tanc, A.H. Kayran, Iterative maximum entropy power spectrum estimation for multirate systems. AEU-Int. J. Electron. Commun. 64(2), 93–98 (2010) · Zbl 1252.94031 · doi:10.1016/j.aeue.2008.11.005
[23] J.W. Woods, Multidimensional Signal, Image, and Video Processing and Coding (Academic Press, San Diego, 2006)
[24] L.P. Yan, B.S. Liu, D.H. Zhou, Asynchronous multirate multisensor information fusion algorithm. IEEE Trans. Aerosp. Electron. Syst. 43(3), 1135–1146 (2007) · doi:10.1109/TAES.2007.4383603
[25] H. Yin, C. Ling, L. Qi, Convergence rate of Newton’s method for L 2 spectral estimation. Math. Program. 107(3), 539–546 (2006) · Zbl 1111.90113 · doi:10.1007/s10107-005-0695-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.