×

Application of many-body dissipative particle dynamics to determine liquid characteristics. (English) Zbl 1356.76287

Summary: Purpose{ } - The purpose of this paper is to find out the applicability of the many-body dissipative particle dynamics (MDPD) method for various real fluids by specifically focusing on the effects of the MDPD parameters on the MDPD fluid properties. { }Design/methodology/approach{ } - In this study, the MDPD method based on van der Waals (vdw) equation of state is employed. The simulations are conducted by using LAMMPS with some modifications of the original package to include the many-body features in the simulation. The simulations are investigated in a three-dimensional Cartesian box solution domain in which MDPD particles are distributed. In order to evaluate the MDPD liquid characteristics for a stationary liquid film, self-diffusivity, viscosity, Schmidt number (Sc) and surface tension, are estimated for different MDPD parameters. The parameters are carefully selected based on previous studies. A set of single-droplet simulations is also performed to analyze the droplet characteristics and its behavior on a solid-wall. Besides, the relationship between the characteristic length in the DPD simulations and scaling parameters for the stationary liquid-film case is discussed by employing the Ohnesorge number. { }Findings{ } - The results show that the liquid properties in the MDPD simulations can be widely ranged by varying the MDPD parameters. The values are highly influenced by the many-body feature in the conservative force which is not included in the original DPD method. It is also found that the wetting ability of the MDPD fluid on solid walls can be easily controlled by changing a many-body parameter. The characteristic length between the MDPD reduced unit and real unit is related for the stationary liquid-film case by employing the Ohnesorge number. { }Originality/value{ } - The present parametric study shows that the liquid properties in the MDPD method can vary by carefully controlling the MDPD parameters, which demonstrates the high-potential applicability of the method for various real fluids. This will contribute to research areas in multi-phase transport phenomena at nano and sub-micron scales in, for example, fuel cells, batteries and other engineering devices involving porous media.

MSC:

76M28 Particle methods and lattice-gas methods
76A20 Thin fluid films
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arienti, M. , Pan, W. , Li, X. and Karniadakis, G. (2011), ”Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions”, The Journal of Chemical Physics , Vol. 134 No. 20, pp. 1-12.
[2] Backer, J. , Lowe, C. , Hoefsloot, H. and Iedema, P. (2005), ”Poiseuille flow to measure the viscosity of particle model fluids”, The Journal of Chemical Physics , Vol. 122 No. 15, pp. 1-6.
[3] Chen, C. , Zhuang, L. , Li, X. , Dong, J. and Lu, J. (2011), ”A many-body dissipative particle dynamics study of forced water-oil displacement in capillary”, Langmuir , Vol. 28 No. 6, pp. 1330-1336.
[4] Español, P. (1997), ”Dissipative particle dynamics with energy conservation”, EPL (Europhysics Letters) , Vol. 40 No. 6, pp. 631-636. · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[5] Español, P. and Warren, P. (1995), ”Statistical mechanics of dissipative particle dynamics”, EPL (Europhysics Letters) , Vol. 30 No. 4, pp. 191-196. · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[6] Fan, X. , Phan-Thien, N. , Chen, S. , Wu, X. and Ng, T.Y. (2006), ”Simulating flow of DNA suspension using dissipative particle dynamics”, Physics of Fluids , Vol. 18 No. 6, pp. 1-10. · Zbl 1261.76044
[7] Fedosov, D.A. , Karniadakis, G.E. and Caswell, B. (2008), ”Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions”, The Journal of Chemical Physics , Vol. 128 No. 14, pp. 1-14.
[8] Ghoufi, A. and Malfreyt, P. (2011), ”Mesoscale modeling of the water liquid-vapor interface: a surface tension calculation”, Physical Review E , Vol. 83 No. 5, pp. 1-5.
[9] Groot, R. and Warren, P. (1997), ”Dissipative particle dynamics: bridging the gap between atomistic and mesoscopic simulation”, Journal of Chemical Physics , Vol. 107 No. 11, pp. 4423-4435. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[10] He, X. , Chen, S. and Zhang, R. (1999), ”A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleightaylor instability”, Journal of Computational Physics , Vol. 152 No. 2, pp. 642-663. , · Zbl 0954.76076 · doi:10.1108/HFF-09-2014-0293
[11] Henrich, B. , Cupelli, C. , Moseler, M. and Santer, M. (2007), ”An adhesive DPD wall model for dynamic wetting”, EPL (Europhysics Letters) , Vol. 80 No. 6, pp. 1-6.
[12] Holz, M. , Heil, S.R. and Sacco, A. (2000), ”Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements”, Physical Chemistry Chemical Physics , Vol. 2 No. 20, pp. 4740-4742. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[13] Hoogerbrugge, P. and Koelman, J. (1992), ”Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics”, EPL (Europhysics Letters) , Vol. 19 No. 3, pp. 155-160. · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[14] Jiao, K. and Li, X. (2011), ”Water transport in polymer electrolyte membrane fuel cells”, Progress in Energy and Combustion Science , Vol. 37 No. 3, pp. 221-291. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[15] Jorn, R. and Voth, G.A. (2012), ”Mesoscale simulation of proton transport in proton exchange membranes”, The Journal of Physical Chemistry C , Vol. 116 No. 19, pp. 10476-10489. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[16] Kumar, A. , Asako, Y. , Abu-Nada, E. , Krafczyk, M. and Faghri, M. (2009), ”From dissipative particle dynamics scales to physical scales: a coarse-graining study for water flow in microchannel”, Microfluidics and Nanofluidics , Vol. 7 No. 4, pp. 467-477. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[17] Li, X. , Popel, A.S. and Karniadakis, G.E. (2012), ”Blood-plasma separation in y-shaped bifurcating microfluidic channels: a dissipative particle dynamics simulation study”, Physical Biology , Vol. 9 No. 2, pp. 1-12.
[18] Li, Y. , Xu, J. and Li, D. (2010), ”Molecular dynamics simulation of nanoscale liquid flows”, Microfluidics and Nanofluidics , Vol. 9 No. 6, pp. 1011-1031. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[19] Li, Z. , Tang, Y.H. , Lei, H. , Caswell, B. and Karniadakis, G.E. (2014), ”Energy-conserving dissipative particle dynamics with temperature-dependent properties”, Journal of Computational Physics , Vol. 265, pp. 113-127. , · Zbl 1349.76709 · doi:10.1108/HFF-09-2014-0293
[20] McCracken, M.E. and Abraham, J. (2005), ”Multiple-relaxation-time lattice-Boltzmann model for multiphase flow”, Physical Review E , Vol. 71 No. 3, pp. 1-9. · Zbl 1117.82315
[21] Merabia, S. , Bonet-Avalos, J. and Pagonabarraga, I. (2008), ”Modelling capillary phenomena at a mesoscale: from simple to complex fluids”, Journal of Non-Newtonian Fluid Mechanics , Vol. 154 No. 1, pp. 13-21. , · Zbl 1273.76052 · doi:10.1108/HFF-09-2014-0293
[22] Milischuk, A.A. and Ladanyi, B.M. (2011), ”Structure and dynamics of water confined in silica nanopores”, The Journal of Chemical Physics , Vol. 135 No. 17, pp. 1-11.
[23] Nagayama, G. , Kawagoe, M. , Tokunaga, A. and Tsuruta, T. (2010), ”On the evaporation rate of ultra-thin liquid film at the nanostructured surface: a molecular dynamics study”, International Journal of Thermal Sciences , Vol. 49 No. 1, pp. 59-66. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[24] Pagonabarraga, I. and Frenkel, D. (2001), ”Dissipative particle dynamics for interacting systems”, The Journal of Chemical Physics , Vol. 115 No. 11, pp. 5015-5026. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[25] Plimpton, S. (1995), ”Fast parallel algorithms for short-range molecular dynamics”, Journal of Computational Physics , Vol. 117 No. 1, pp. 1-19. , · Zbl 0830.65120 · doi:10.1108/HFF-09-2014-0293
[26] Sadus, R.J. (1999), Molecular Simulation of Fluids: Theory, Algorithms and Object-Orientation , Elsevier, New York, NY.
[27] Shui, L. , Eijkel, J.C. and van den Berg, A. (2007), ”Multiphase flow in micro-and nanochannels”, Sensors and Actuators B: Chemical , Vol. 121 No. 1, pp. 263-276. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[28] Sun, J. , He, Y.-L. and Tao, W.-Q. (2011), ”A molecular dynamics study on heat and mass transfer in condensation over smooth/rough surface”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 21 No. 2, pp. 244-267. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[29] Tiwari, A. and Abraham, J. (2006), ”Dissipative-particle-dynamics model for two-phase flows”, Physical Review E , Vol. 74 No. 5, pp. 1-13.
[30] Tiwari, A. and Abraham, J. (2008), ”Dissipative particle dynamics simulations of liquid nanojet breakup”, Microfluidics and Nanofluidics , Vol. 4 No. 3, pp. 227-235. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[31] Tiwari, A. , Reddy, H. , Mukhopadhyay, S. and Abraham, J. (2008), ”Simulations of liquid nanocylinder breakup with dissipative particle dynamics”, Physical Review E , Vol. 78 No. 1, pp. 1-11. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[32] Vargaftik, N. , Volkov, B. and Voljak, L. (1983), ”International tables of the surface tension of water”, Journal of Physical Chemical Reference Data , Vol. 12 No. 3, pp. 817-820. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[33] Wang, C. , Chen, J. , Shiomi, J. and Maruyama, S. (2007), ”A study on the thermal resistance over solid-liquid-vapor interfaces in a finite-space by a molecular dynamics method”, International Journal of Thermal Sciences , Vol. 46 No. 12, pp. 1203-1210. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[34] Warren, P.B. (2003), ”Vapor-liquid coexistence in many-body dissipative particle dynamics”, Physical Review E , Vol. 68 No. 6, pp. 1-8.
[35] Wörner, M. (2012), ”Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications”, Microfluidics and Nanofluidics , Vol. 12 No. 6, pp. 841-886. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
[36] Xu, J.L. , Zhou, Z.Q. and Xu, X.D. (2004), ”Molecular dynamics simulation of micro-Poiseuille flow for liquid argon in nanoscale”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 14 No. 5, pp. 664-688. , · Zbl 1078.76054 · doi:10.1108/HFF-09-2014-0293
[37] Xu, Z. , Meakin, P. , Tartakovsky, A. and Scheibe, T.D. (2011), ”Dissipative-particle-dynamics model of biofilm growth”, Physical Review E , Vol. 83 No. 6, pp. 1-9.
[38] Yamamoto, S. and Hyodo, S.A. (2003), ”A computer simulation study of the mesoscopic structure of the polyelectrolyte membrane nafion”, Polymer Journal , Vol. 35 No. 6, pp. 519-527. , · Zbl 1356.76287 · doi:10.1108/HFF-09-2014-0293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.